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Abstract 

 First principles, physics-based models help organizations developing new remote 

sensing instruments anticipate sensor performance by enabling the ability to create 

synthetic imagery for proposed sensor before a sensor is built.  One of the largest 

challenges in modeling realistic synthetic imagery, however, is generating the spectrally 

attributed, three-dimensional scenes on which the models are based in a timely and 

affordable fashion.  Additionally, manual and semi-automated approaches to synthetic 

scene construction which rely on spectral libraries may not adequately capture the 

spectral variability of real-world sites especially when the libraries consist of 

measurements made in other locations or in a lab.  This dissertation presents a method to 

fully automate the generation of synthetic scenes when coincident lidar, Hyperspectral 

Imagery (HSI), and high-resolution imagery of a real-world site are available.  The 

method, called the Lidar/HSI Direct (LHD) method, greatly reduces the time and 

manpower needed to generate a synthetic scene while also matching the modeled scene 

as closely as possible to a real-world site both spatially and spectrally.  Furthermore, the 

LHD method enables the generation of synthetic scenes over sites in which ground 

access is not available providing the potential for improved military mission planning 

and increased ability to fuse information from multiple modalities and look angles.  The 

LHD method quickly and accurately generates three-dimensional scenes providing the 

community with a tool to expand the library of synthetic scenes and therefore expand the 

potential applications of physics-based synthetic imagery modeling. 
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AUTOMATED SYNTHETIC SCENE GENERATION 

 
I.  Introduction 

1.1 Motivation 

 The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is a 

tool developed and established at the Rochester Institute of Technology over the past 

decades to generate first-principles-based synthetic images.  Before a new remote sensor 

is built or flown, DIRSIG allows users to model the output of the proposed sensor and 

thereby anticipate sensor performance.  This enables algorithm testing and development, 

testing of imaging system designs, and the creation of data for training of image analysts 

allowing processes to be in place prior to the sensor’s first flight (Schott, 2007; Schott, et 

al., 1999; Schott, et al., 2012).  Additionally, constructed scenes can be used as a Rosetta 

Stone to register multiple modalities by registering disparate modalities first to the scene 

and then backing out the direct registration between the modalities. 

To make the output of DIRSIG as realistic as possible, three-dimensional, 

facetized scenes attributed with spectral information are often built to model real-world 

locations.  While extremely realistic, scenes like DIRSIG’s Megascene1, originally built 

in 2002 and consisting of 1.4 km square tiles of neighborhoods near Rochester, New 

York, can take months to construct (Ientilucci and Brown, 2003).  Physical measurements 

of homes, trees, and street locations, along with the collection of spectral information 

using a field spectrometer, are required.  Due to the large amount of time and manpower 

needed to generate these scenes, relatively few are available to the DIRSIG user 

community. 
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More recently, methods have been developed and significant time savings have 

been realized using lidar or computer vision techniques to generate the three-dimensional 

models on which these scenes are based.  The Lidar/HSI Direct (LHD) method developed 

in this research builds on the Lidar Direct method in which a lidar point cloud is facetized 

using Delaunay triangulation , input directly into DIRSIG in wavefront (.obj) format, 

then draped with a High-Resolution (HR) image to provide texture information (Walli, 

2010).  In the Lidar Direct method, the HR imagery is registered to the rasterized lidar 

return strength using an automated registration process based on the Scale-Invariant 

Feature Transform (SIFT) algorithm, the RAndom SAmple Consensus (RANSAC) 

algorithm  (Bolles and Fischler, 1981), and a minimization of Root Mean Square 

Distance Error (RMSDE) of the matched points between the two coordinate systems.  

Once registered, the HR image acts as texture map for the facetized scene.  However, the 

Lidar Direct method requires human input to attribute spectral information, either from 

lab-measured spectra or field measurements, to all of the facets in the scene (Walli, 

2010). 

DIRSIG users are thus confronted with the issue of either being limited to the 

current DIRSIG library of synthetic scenes or forced to create a scene themselves which 

better fits the desired modeling parameters.  To manually recreate a desert scene with the 

fidelity of DIRSIG’s Megascene1, for example, would take months if similar manual 

methods were used to capture the scene geometry, texture, and spectral information.  The 

project would require the deployment of an extensive ground team to measure scene 

geometry and spectra followed by a huge effort to then reconstruct the scene digitally 

using CAD software to build the geometry and attribute spectral and texture information.  
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With an automated method, the same user could create a realistic custom scene in a 

matter of hours if the necessary HR RGB imagery, lidar, and HSI are available.  The 

LHD method presented here provides that automated capability to generate realistic 

scenes and greatly increase the utility of the DIRSIG model.  Additionally, since the LHD 

method requires only overhead imagery and data to construct a synthetic scene, no 

ground crew and thus no ground access is necessary for scene construction.  This enables 

the construction of scenes in hostile or otherwise access-limited areas. 

1.2 Document Layout 

 The objective of this research is to demonstrate a method to automate scene 

generation for use in DIRSIG modeling and test the method on both a modeled dataset, 

where inputs are known perfectly thus allowing easy comparison of the output results, 

and a real dataset to test the robustness of the method in a realistic situation.  First, 

relevant work in the field is summarized in Chapter II.  Since this method incorporates 

techniques from several different fields, this section includes discussion on registration 

methodology, geometry and texture extraction, scene classification and spectral 

attribution, data fusion, and other scene generation techniques and approaches.  The 

theoretical background is presented next in Chapter III starting with the basics of DIRSIG 

and the approximations and assumptions that are required for this automated method 

followed by a discussion of the theory behind the Walli registration method used to relate 

the input modalities.   

 Chapter IV first introduces the two datasets used to develop the LHD method.  

Next, each of the steps of the LHD automated scene generation method are presented 



4 

including registration of the disparate input modalities and extraction of the scene 

geometry and scene texture maps.    It then details three approaches to extract the spectral 

information required for the scene:  The material map and material library.  Approach 1is 

an automated method in which the spectral component is extracted using only the HSI 

input modality.  In this case, the material map is limited to the lower resolution of the 

HSI, relative to the HR and lidar inputs.  Approach 2 and Approach 3 attempt to increase 

the resolution and accuracy of the generated material map by incorporating the spatial 

information of the higher-resolution modalities into the scene classification.  The 

intended result is a material map with enhanced resolution and thus a higher-fidelity 

resulting scene.  Approach 2 attempts, with limited success, to employ linear unmixing of 

the HSI pixels and then locate the various component materials in each HSI pixel using 

the spatial information in the HR imagery and lidar.  Approach 2 did not achieve full 

automation, but is included to show the research progression which results in Approach 

3.  Approach 3 begins with a high-resolution image segmentation of a fused HR RGB 

image and rasterized lidar return strength and elevation cube, then uses logic steps to 

incorporate the lower-resolution spectral information from the HSI to further separate 

classes in the scene. 

 An additional goal of this research is to develop a method to evaluate how 

accurately the modeled scenes represent the original scene.  Chapter V presents both 

qualitative evaluations and quantitative evaluations of scene outputs.  The quantitative 

evaluations are accomplished using a new metric called the Average Band Difference 

(ABD).  It is used to compare synthetic imagery produced using the LHD-generated 

scenes to the original imagery used to create the scenes.  This comparison is done for 



5 

both a fully-modeled scene in which scene inputs are generated from a high-fidelity 

DIRSIG scene and then for a real dataset over a site near Melrose, Florida.   The final 

chapter, Chapter VI, outlines the major contributions of this research to the modeling and 

scene classification.  It then presents possibilities for future work and concludes with a 

summary of the overall effort. 

1.3 Overview of Results 

 As mentioned above, three approaches are presented for the automated extraction 

of the scene spectral component for the LHD method.  The three approaches differ only 

in their method for generating the material map for the scene.  Approach 1 relies only on 

the HSI input to generate the material map using the unsupervised Stochastic Expectation 

Maximization (SEM) algorithm.  This is the first fully-automated approach for extracting 

the scene spectral components and thus results in the first full automation of synthetic 

scene generation using the LHD method.  However, because the HSI is the only input to 

determining the material map, the generated material map is limited to the resolution of 

the HSI, which is lower than the other two inputs (rasterized lidar and RGB imagery).  

Thus, Approach 2 and Approach 3 employ a fused technique to generate the material map 

in which the higher-resolution spatial information is incorporated into the generation of 

the material map.   

 The second approach uses the linear mixing model to perform a spectral unmixing 

of the HSI pixels with a constrained least squares solver.  The resulting material 

abundances are used as constraints to then determine the locations of the materials within 

each HSI pixel using the spatial information in the RGB and rasterized lidar imagery.  
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Full automation is not achieved which Approach 2 due to the inability to satisfactorily 

automate the selection of material endmembers with which to perform the linear 

unmixing of the HSI pixels.  Endmembers are therefore selected by hand to allow an 

evaluation of the resulting HR material map using this approach to determine whether 

additional efforts should be spent in automating the endmember selection process.  As is 

shown in Chapter III, the resulting material maps using this method, even with hand-

selected endmembers, are not of sufficient quality to invest additional time in this 

approach. 

 Approach 3 builds on Approach 2 but runs in reverse sequence by first using a 

clustering method to segment the higher-resolution inputs (a fused RGB and rasterized 

lidar cube) using the Iterative Self-Organizing Data analysis technique (ISODATA).  It 

then uses the registration transformation matrices to reference the HSI spectral content to 

separate segmented areas consisting of different materials using the Spectral Angle 

Mapper (SAM) technique.  Full automation is achieved using this approach  in addition 

to generating a HR material map.   

 The two fully automated methods (Approach 1 and Approach 3) are used to 

generate scenes using input data from both a modeled and real-world site to evaluate the 

quality of the recreated scenes.  To perform this evaluation DIRSIG-generated synthetic 

RGB imagery and HSI is compared to the input RGB imagery and HSI.  The comparison 

metric used is explained in detail in Chapter V, but is basically an average difference per 

band at each pixel which is then averaged across the scene.  Table 1 summarizes the three 

approaches used and the average band difference (ABD) results for Approach 1 (the HSI-

only approach) and Approach 3 (the fused segmentation approach) when used to 
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reconstruct the modeled VanLare scene.  As the table shows, the HSI-only and 

Segmentation approaches both produce relatively accurate reconstructions of the original 

VanLare scene with respect to the average per pixel and per band difference in RGB 

intensity (on a scale of 0 to 255) and HSI reflectance (on a scale of 0% to 100%).  While 

the ABD results do not show a large difference between Approach 1 and Approach 3, 

Chapter V presents an alternative metric to compare the approaches over smaller 

windowed regions.   

Table 1.  Summary of the three approaches investigated to automate the generation 
of a material map for the LHD method (NMM and LMM stand for Normal and 
Linear Mixture Model, respectively). 

Approach Fused/ 
Sharpened 

Fully 
Auto-
mated 

Spectral 
Data 

Model 
Used 

Primary 
Algorithm 

Used 

RGB 
ABD 

(Digital 
Counts) 

HSI ABD 
(% 

Reflect) 

Avg Std Avg Std 

1: HSI-only No Yes NMM SEM 4.5 6.5 2.0 2.0 

2: Unmixing Yes No LMM 
Constrained 

Least 
Squares 

- - - - 

3: Segmentation Yes Yes NMM ISODATA/ 
SAM 4.5 6.2 2.2 2.3 

 The alternative metric uses a threshold percent difference between the input 

imagery and recreated imagery to determine the number of pixels within 15% of the 

original input imagery.  While presented as a topic for future research and improvement, 

the metric does show that Approach 3 results in improved accuracy in regions with fine 

spatial details.  Thus, determining which approach to use depends on the GSD of the 

remote sensor to be modeled.  The HSI-only approach may be sufficient if the user is 

attempting to model a sensor with a larger GSD than the input HSI.  However, if the GSD 
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of the sensor to be modeled is smaller than the input HSI, the quality of fine details in the 

synthetic scene are noticeably improved when Approach 3 is used. 
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II. Literature Review 

2.1 Chapter Overview 

Developing methods to automate the generation of three-dimensional scenes for 

various types modeling has become more prevalent in recent years for uses such as city 

planning (Föerstner, 1999), environmental modeling (Brenner, 1999), navigation (Auer, 

et al., 2010; Brenner, 2005), games and entertainment (Hearn and Baker, 1997), military 

planning (Mason, 2004) and, for the focus of DIRSIG modeling, remote sensing design 

and applications (Gurram, et al., 2007; Ientilucci and Brown, 2003; Lach, et al., 2009; 

Schott, 2007; Schott, et al., 2012; Walli, 2010).  In many cases, as in the modeling of 

wind patterns or wave propagation through city skylines, three-dimensional models may 

be required only to be accurate in their three-dimensional geometry.  In uses such as city 

planning, games and entertainment, and military planning, scenes have the additional 

requirement to be accurately attributed with visible color and texture information as well.  

The amount of research published on autonomously-generated, fully-textured and 

spectrally accurate (beyond the visible wavelengths) three-dimensional models for the 

use of modeling remote sensing instruments is relatively small.   

This chapter summarizes previous work in the various disciplines involved in 

generating a textured and spectrally attributed three-dimensional scene.  Since no single 

sensor currently captures all of the information required for these models, the first 

discipline involved is multimodal registration.  Next, current techniques in geometry 

extraction and texture attribution are summarized.  Spectral classification using HSI alone 

and HSI fusion techniques are then presented.  Finally, previous efforts which explore the 
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automation process of bringing together the various inputs to generate the fully attributed 

scene are summarized. 

2.2 Multimodal Registration Techniques 

Whether accomplished manually or using an automated approach, registration is a 

first step to accomplish a plethora of tasks in the fields of remote sensing, medical 

imaging, and computer vision.  Various methods including the registration of images of 

different viewpoints, times, modalities, and real imagery to synthetic imagery have been 

specifically developed for each of these cases.  While a full investigation of all of the 

registration approaches is beyond the scope of this document, an overview of the 

different types is included here to show why the SIFT, RANSAC, RMSDE minimization 

approach developed by Walli is an appropriate method for the registration of the various 

modalities involved in automated scene construction.   

The survey of image registration methods by Zitova and Flusser published in 

2003 provides a good overview of the types of techniques and steps involved in 

registration.  Most image registration methods fall into one of two types of approaches: 

area-based or feature-based.  Using one of these two types of approaches, registration 

methods generally follow four steps in accomplishing the registration: feature detection, 

feature matching, transform model estimation, and image resampling and transformation 

(Zitová and Flusser, 2003).   

For the feature detection step of the registration process, area-based methods 

depend on matching intensity patterns in one image to intensity patterns in another image 

using some type of correlation metric.  While this can produce successful results when 
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the two images have similar GSD, illumination conditions, and viewing angles, 

correlation techniques may struggle when trying to register images from different types 

of modalities where these image parameters are likely not similar between the modalities 

(Walli, 2010).   

Feature based registration methods on the other hand, tend to use a higher level of 

information than image intensity to detect features in images.  This is useful because the 

descriptors can be developed in such a way as to be invariant to common differences 

between images such as scale and rotation.  The SIFT algorithm is often used because the 

keypoint descriptors are not only invariant to scale and rotation, but also robust across a 

range of affine distortions, changes in viewpoint, noise, and illumination (Lowe, 2004).  

This is ideal for the multimodal registration required for scene extraction because the HR 

imagery, lidar, and HSI sensors are very different and even when all three are available 

over a scene; they are likely collected at different illuminations and many times at 

different times of the year.  SIFT is also efficient in the way it matches keypoints 

between images using a simple distance metric.   

SIFT, like many registration techniques can be combined with other culling or 

refinement methods to improve registration.  Hasan, et al., combined SIFT with a 

technique to also consider spatial relationships of keypoints to improve the reliability of 

selected matches when registering multi-spectral images (Hasan, et al., 2010).  Another 

example of SIFT application in registering remote sensing images is published by Song, 

et al.  This research improves the robustness of SIFT by employing both a spatial analysis 

of matched points along with a mutual information metric generated using Lissajous 

curves (Song, et al., 2010).  As a final example, Walli found SIFT to be particularly 
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robust in its ability to register imagery between modalities including scene to model 

registration (Walli, 2010).  While these are just a few examples, literally thousands of 

papers (24,321 according to Google Scholar at the time of this writing) have been 

published on various registration techniques using the SIFT algorithm leading to its status 

as the gold standard for the registration of remote sensing imagery. 

RANSAC is another widely used algorithm in the area of registration research due 

to its ability to quickly sort through potential matches and eliminate incorrect matches 

(Walli, 2010).  Using RANSAC to cull incorrectly identified matches is therefore a 

common second step to the SIFT algorithm.  RANSAC can be used to enforce 

appropriate relationships on the set of matches using epipolar geometry and homography 

constraints (Hasan, et al., 2010; Walli, 2010; Wong and Clausi, 2007).  This leads 

naturally into the next step of the registration process of estimating the transform model.   

To estimate the transform model, the set of matched points are used to extract the 

transformation which relates the pair of images in the registration process.  Generally, as 

is the case in imagery used in the LHD method, some assumption about the 

transformation relation can be made.  When dealing with georeferenced imagery taken 

from a nadir viewing geometry, the transform can be assumed to be affine if not more 

restricted to a linear conformal transformation.  With this assumption, only three matched 

points are required to solve for the six unknowns in the affine transformation matrix and 

thus when more than three matches are available, the problem is over-determined and 

solving for the transformation is accomplished by determining the transformation which 

results in the lowest amount of error for the set of match points (Zitova and Flusser, 
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2003).  In this research, MATLAB’s cp2tform function is used to performed this 

operation (MATLAB, 2010). 

 The final step in any registration process is to choose the type of interpolation 

used to map one of the images to the coordinate system of the other image.  For the 

registration in this work, MATLAB is used to perform the transformation using the 

imtransform function and its default bilinear transformation is selected when 

transforming all imagery except the HSI.  In the case of HSI, it is imperative that the 

spectral component is not polluted by incorporating local spatial information in an 

interpolation.  Thus, nearest neighbor interpolation is used when transforming HSI 

imagery to another coordinate system. 

2.3 Geometry and Texture Extraction 

The geometry and texture for a scene can be generated manually by transferring 

physical measurements from a site into a computer assisted drawing program and then 

attributing each facet with appropriate texture and spectral information.  The result, 

depending on the amount of time invested in making measurements and drawing detailed 

geometries, can be an extremely accurate and detailed scene as in DIRSIG’s megascene1 

(Ientilucci and Brown, 2003).  However, the focus for this work is to reduce the time and 

cost involved in making these accurate wide-area scenes, thus semi-automated and 

automated techniques are reviewed here. 

Semi-automated and automated geometry extraction is typically accomplished 

using photogrammetric techniques or lidar-based techniques.  Each set of techniques has 

its advantages and disadvantages.  Photogrammetric techniques rely on the ability to 
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determine the scene geometry using images taken from multiple viewpoints of a scene.  If 

available, multiple images can be registered and related by finding match points and 

extracting the fundamental matrices defining the epipolar geometry of the various camera 

positions.  The scene geometry is then extracted from this information (Cheng and Gong, 

2006; Hartley and Zisserman, 2003; Föerstner, 1999).  A strength of this technique is 

that, once the geometry is known, texture from the registered images is easily applied to 

the geometry to create realistic looking scenes.  A drawback of this technique is that 

many images may be needed to generate the dense point cloud required to construct the 

geometry.  Lidar-based techniques have an advantage in that the scene geometry is 

measured directly by the instrument and no additional processing is therefore required to 

generate the geometry besides facetization of the lidar point cloud.  Texture information 

for non-vertical surfaces in the scene can be draped over the geometry using a 

rasterization of the lidar return strength or by registering and draping a separate aerial 

image over the geometry (Brenner, 2005; Lach, et al., 2009; Schenk and Csathó, 2002; 

Schott, et al., 1995; Walli, 2010).  Additional off-nadir imagery is required, however, to 

generate textures for vertical facets and color imagery is necessary to generate the proper 

reflectance values if the scene is to model color images.   

Whether photogrammetric or lidar techniques are used, the generated geometries 

can be refined and the number of facets reduced for man-made structures in the scene by 

extracting building footprints and restricting items like building walls and surfaces to be 

single, flat facets (Khoshelham, et al., 2005; Lach, et al., 2009).  Additionally, methods 

have been developed which have the ability to extract tree center locations from the 

geometry point clouds and then place a higher fidelity representation of a tree in those 
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locations (Ientilucci and Brown, 2003; Lach, et al., 2009; Li, et al., 2012; Lin, et al., 

2011; Wu, et al., 2013; Zhang and Qiu, 2012).  These refining techniques could be 

incorporated into the LHD methodology presented here, but, as the purpose of this work 

is to generate wide-area scenes and thus model remote sensing instruments with at least 1 

meter GSD, this level of fidelity was deemed unnecessary for the initial development of 

the LHD method.  

2.4 Scene Classification using HSI and Fused Methods 

 Automating the generation of and then refining the spectral component of the 

scene building process is the primary focus of the research presented in this dissertation 

and the final step required to fully automate scene generation from coincident HR 

imagery, lidar, and HSI.  A vast amount of research exists for the segmentation and 

classification of all three of these input datasets involved in the LHD method.   

2.4.1 Hyperspectral-Only Classification 

As is detailed in Chapter IV, scene classification in Approach 1 is accomplished 

using a standard HSI-only classification algorithm called Stochastic Expectation 

Maximization (SEM) (Celeux and Diesbolt, 1986; Masson and Pieczynski, 1993).  This 

algorithm is included in the approach due to its popularity as an unsupervised 

classification method as well as its requirement that only a single initial input of initial 

class number is needed to start the algorithm (Eismann, 2012; Givens, et al., 2012).  

Similar in its ubiquity to SIFT and RANSAC, SEM is another example of a widely used 

algorithm in its respective community of scene classification.  Originally developed by 

Celeux and Diesbolt in 1986, SEM performs unsupervised segmentation of data using 
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maximum likelihood clustering based on posterior probabilities (Masson and Pieczynski, 

1993).  This is equivalent to assigning spectra to classes based on Mahalanobis distance 

as in a simple quadratic clustering method, but in SEM classes are allowed to overlap and 

thus some randomness is introduced (Eismann, 2012).  Example resulting material maps 

for both modeled and real HSI are presented in Chapter VI. 

2.4.2 Fusion Classification Approach Using the Linear Mixing Model 

While the unsupervised SEM segmentation method of Approach 1allows for the 

full automation of the generation of the material map and spectral library for the LHD 

method, this research also presents the application of fusion-based techniques to improve 

the resolution and accuracy of the material map.  The first such approach, Approach 2, 

employs the linear mixing model to constrain and unmix the HSI pixels resulting in a 

higher-resolution material map.  The linear mixing model is a simple and physical model 

for HSI in that it assumes each pixel in a hyperspectral image could consist of multiple 

material types and that each pixel’s spectrum is thus a linear combination of the spectra 

of the pure materials captured in the pixel.  The coefficients in the linear combination 

therefore refer to the percentage (abundance) of each material which exists in the pixel.  

Thus, if the endmembers (the pure spectra for each of the materials in the scene) are 

known, each pixel is simply a linear combination of these endmember spectra and all of 

the coefficients are restricted to be both positive and sum to one (Eismann, 2012; Gross 

and Schott, 1996).  While seemingly simple and intuitive, perfect endmember spectra are 

not easily determined or known.  Thus, the nonnegativity and additivity constraints can 

be adjusted based on a user’s confidence in their actual knowledge of the endmembers 

(Eismann, 2012).   
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 Various approaches are available to attempt to determine the endmembers that 

exist within any given hyperspectral scene.  Pixel Purity Index (PPI) (Chang and Plaza, 

2006) and N-FINDR (Winter, 1999) are two such approaches which are employed with 

limited success in Approach 2 of Chapter IV.  Both of these methods attempt to find 

endmembers based on their extreme locations within the multidimensional point clouds 

which make up a hyperspectral dataset.  PPI randomly generates lines on which to project 

the points in the hyperspectral dataset.  By repeatedly generating these lines and 

calculating the projections of the points in the point cloud, PPI determines which points 

in the hyperspectral dataset routinely result in large projections onto the randomly 

generated lines.  These points are assumed to be pure pixels and thus endmember 

candidates.  N-FINDR uses a similar logic with a volume-based approach.  Based on a 

user input of number of pure materials in the scene, N-FINDR computes the 

multidimensional volume for the points in the data cloud generally starting with a random 

set then using a gradient metric to continually select points which result in larger 

volumes.  The set of points which results in the largest volume is then assumed to be 

composed of endmember candidates (Eismann, 2012). 

Once endmember candidates are determined, a least squares solver can be used to 

find the best fit linear combination of endmember abundances which make up each pixel 

in a hyperspectral image.  While intuitive, the linear mixing model is limited in how well 

it actually fits the data.  First, mixing may not be completely linear between materials.  

Also, the single endmember model is generally not able to represent a real class in a 

scene.  A pure grass pixel, for example, is generally composed of various species of grass 

as well as grass with different amounts of water, health, fertilizer, etc. all of which have 



18 

an effect on the reflectivity of grass.  The linear mixing model also struggles with 

representing low lighting, or shade, pixels.  A general work-around to the shade case is to 

have a shade class which is mixed into shade pixels, but a shade class is not desirable for 

a modeled spectral library in which one hopes to create a scene which will generate 

accurately synthetic  scenery regardless of illumination angle (Eismann, 2012).   Finally, 

determining the number of desired endmembers is also not a trivial task.  Generally this is 

done through some sort of dimensionality reduction where the number of pure materials 

in a scene is inferred from the number of principle component bands determined to be 

significant.  However, determining the number of significant principle component bands 

can be somewhat arbitrary if based on some threshold of variance captured.  

Alternatively, the number of significant principle components can be estimated using 

more complex estimations of noise in the data (Chang and Du, 2004; Eismann, 2012). 

As is shown in the presentation of Approach 2 in Chapter IV, the linear mixing 

model is used to determine material abundances in hyperspectral pixels, which are then 

transformed to the HR and lidar GSDs in an attempt to locate the various materials within 

each pixel according to the unmixed abundances.  However, this approach runs into 

challenges first in finding an algorithm to automate the selection of endmembers then, 

even with hand selected endmembers, in satisfactorily determining abundances and 

locating material positions with the hyperspectral pixels. 

2.4.3 Fusion Approach using ISODATA and Rules-based Algorithm 

 The final and most successful fusion based approach to scene classification found 

in this research, Approach 3, begins with a fusion of the HR information from the RGB 

imagery and lidar data.  This portion of the method is based on the work of Lee and Shan 
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published in 2002 in which they improved coastal coastline mapping using ISODATA to 

classify a fused cube consisting of multispectral imagery and lidar data (Lee and Shan, 

2002).  In this research, as is shown in Chapter IV, the HR imagery is fused with 

rasterized lidar elevation maps and return strengths instead of multispectral imagery.  

Thus, both components are of a relatively high resolution compared to the HSI GSD.  

Once the two HR components are used to generate a HR material map, class confusion is 

resolved by performing a spectral comparison of pure connected component regions in 

the HSI then applying logic-based rules. 

2.4.5 Other Fusion-Based Approaches 

While the three approaches outlined above are the methods applied in this 

research, there are a multitude of alternative approaches to generating material maps both 

from HSI alone and HSI fused with other modalities.  One popular approach is the 

sharpening of the HSI which incorporates the high frequency spatial information from 

RGB or panchromatic imagery into HSI imagery to increase the spatial resolution of the 

HSI.  Generally the HR spatial information is incorporated using a domain change to the 

frequency regime with a Fourier or Wavelet transform, or a transformation to principal 

component space.  While many of these methods result in imagery that is sharper to the 

human eye, the radiometry of the original HSI is harder to preserve and often bleeding 

and interpolation artifacts show up in the resulting imagery (Borel, et al., 2010; Eismann 

and Hardie, 2005; Svab and Ostir, 2006; Walli, 2003).  Even with these drawbacks, these 

sharpening techniques could have been used in this work, but the success of Approach 3 

made investigation into these techniques unnecessary.   Additionally, Approach 3 has a 
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relatively small computational cost since it uses a simple distance calculation in the 

application of the ISODATA algorithm on the five bands of the fused RGB/lidar cube. 

Other techniques for fusing lidar and HSI information exist such as extracting 

surface roughness from lidar to compare with HSI classification results (Mundt, et al., 

2006; West and Resmini, 2009) and an increasing number of sensors now exist to capture 

the complementary information of lidar and HSI (Asner, et al., 2007).  Other works 

incorporate lidar height information to perform automated target detection.  In this case, 

targets are assumed to be above ground and of a certain size allowing for potential target 

areas to be identified in lidar elevation maps before comparing spectra in HSI (Kanaev 

and Walls, 2011).  Other research efforts focus on the identification of tree types and 

locations using the lidar elevation information from the lidar fused with spectral 

information gained from HSI (Daplonte, et al., 2009).  The wide range of available fusion 

techniques and algorithms leaves a nearly inexhaustible supply of methods to best 

classify scenes using hyperspectral, HR, and lidar fusion. 

2.5 Generating Spectrally and Texturally Attributed Three-dimensional Scenes 

Two previous research efforts focused on the semi- and full automation of scene 

generation for use in DIRSIG with full spectral attribution of the visible through short-

wave infrared wavelengths.  In the first, Lach et al. did a great deal of work focused on 

the high-fidelity extraction of the scene geometry from lidar, then applied texture and 

spectral information from RGB imagery and HSI.  Many portions of the texturing and 

spectral attribution are automated in his research, but the registration between the lidar 

and HSI is accomplished by hand-selecting matching ground control points.  
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Additionally, extraction of the material map and spectra from the HSI are accomplished 

using a supervised classification routine with manual refinement of the material map 

(Lach, et al., 2009).  In the second research effort, Walli developed a robust registration 

method to automate the registration of the geometry and texture components and fully 

automated the geometry extraction and draping of texture maps in a method dubbed the 

Lidar Direct method.  However, spectral attribution is accomplished manually using a 

combination of supervised classification of the HR imagery and hand-editing, ultimately 

linking an existing spectral library to the geometry and texture (Walli, 2010).  The 

method presented in this paper, the Lidar/HSI Direct method (LHD), extends the Lach 

and Walli methods to fully automate the spectral attribution and spectral library 

extraction using the robust registration technique developed by Walli and an 

unsupervised classification of the HSI to create the material map and pull reflectance 

spectra directly from the HSI.  Additionally, Approach 3 employs fusion techniques to 

incorporate the higher spatial information available in the HR imagery and lidar return to 

improve the resolution and accuracy of the HSI material map.  The result is a fully 

automated approach to generate accurate, three-dimensional scenes with both texture and 

spectral attribution for use in the DIRSIG modeling software. 
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III. Theoretical Background 

This chapter presents the theory behind the physics-based modeling used in 

DIRSIG especially in how it relates to the use of these autonomously generated scenes.  

Next, the robust registration method used to spatially relate the three input modalities is 

presented.  The Walli registration process uses three primary algorithms:  SIFT, 

RANSAC, and average RMSDE minimization.  The details of these three algorithms are 

presented along with an explanation of how they are included in the registration process.  

The automated registration between the three input modalities of HR, lidar, and HSI is an 

essential first step to enabling the automated extraction of the synthetic scenes presented 

in Chapter IV. 

3.1 DIRSIG Physics-Based Modeling Overview 

 DIRSIG has been and continues to be developed at Rochester Institute of 

Technology’s Chester F. Carlson Center for Imaging Science.  It is an extremely 

powerful modeling package providing the tools to generate synthetic imagery for both 

passive and active sensors from 0.4 µm to 20 µm and beyond with recent work extending 

the DIRSIG model into the longer synthetic aperture radar wavelength regime.  The 

DIRSIG model is able to handle both reflective and emissive properties of materials 

using measured emissivities or, if measured emissivities are not available, thermal 

modeling for mid and long-wave infrared regions.  This research focuses on the visible 

through near infrared and short wave infrared region (VNIR/SWIR) of the 

electromagnetic spectrum (0.4 µm to 2.5 µm) because of the availability of HSI datasets 

in this range.  Thus, the theoretical discussion presented here focuses on reflective 
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properties of materials.  However, in cases where mid-wave or long-wave infrared HSI is 

available, the LHD method could be similarly applied to generate synthetic scenes in 

those regions as well. 

DIRSIG outputs are useful for a variety of purposes including sensor prototyping, 

algorithm testing and training, and analyst training.  The ultimate goal of DIRSIG is to 

provide “an integrated environment for image system simulation” in which users are able 

to “prototype, evaluate, and demonstrate the capabilities of next generation imaging 

systems.” (DIRSIG Course Lecture Materials, 2011)   

DIRSIG is a physics-based ray tracing modeling software that allows a user to 

specify all scene, atmospheric, sensor, and illumination conditions which are then used to 

generate a synthetic image at the defined sensor based on the input conditions.  At its 

most basic level, DIRSIG relies on the radiation propagation equation  

 𝐿𝑝(𝜆) = 𝜏𝑎(𝜆)𝐿𝑢(𝜆) + 𝐿𝑎(𝜆), (3.1)  

where Lp(λ) is the spectral radiance at the aperture of the sensor, τ(λ) is the atmospheric 

path transmission, Lu(λ) is the upwelling radiance, and La(λ) is the path radiance and all 

of these terms are dependent on the wavelength, λ.  The upwelling term from Equation 

(3.1), Lu(λ), for a solid surface consists of two pieces, emitted and reflected radiance such 

that 

 𝐿𝑢(𝜆) = 𝐿𝑒(𝜃𝑟 ,𝜙𝑟 , 𝜆) + 𝐿𝑟(𝜃𝑟 ,𝜙𝑟 , 𝜆), (3.2)  

where Le and Lr are the emitted and reflected radiance depending on the facet’s angular 

orientation to the sensor (defined by θr and φr) and wavelength λ.  The emitted and 

reflected components from Equation (3.2) are then further defined as 
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(3.4)  

where B(λ,T) is the blackbody spectral radiance distribution for the facet at temperature 

T, ρBRDF is the bidirectional reflectance distribution function (BRDF) which is a material 

property relating the angle of incident irradiance to the angle of reflected radiance, Es(θs, 

φs, λs) is the solar irradiance, Ld(θ,φ,λ) is the downwelling radiance, and the various 

angles are defined as in Figure 1 below. 

 
Figure 1.  Geometry for a single facet (Eismann, 2012). 

Using the Beard-Maxwell BRDF model, the BRDF from Equations (3.3) and (3.4) is 

composed of specular, diffuse, and volumetric terms such that 
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 𝜌𝐵𝑅𝐷𝐹(𝜃𝑟 ,𝜙𝑟 ,𝜃,𝜙, 𝜆)

= 𝜌𝑠(𝜃𝑟 ,𝜙𝑟 , 𝜃,𝜙, 𝜆) + 𝜌𝑑 +
𝜌𝑣(𝜆)

cos 𝜃 + cos 𝜃𝑟
. 

(3.5)  

If facets are approximated as diffuse Lambertian reflectors, as in this research, the BRDF 

specular and volumetric terms (ρs and ρv) from Equation (3.5) are assumed to be zero and 

therefore loses its angular dependence such that 

 
𝜌𝐵𝑅𝐷𝐹(𝜃𝑟 ,𝜙𝑟 ,𝜃,𝜙, 𝜆) = 𝜌𝑑 =

𝜌𝐻𝐷𝑅(𝜆)
𝜋

=
𝜌𝐷𝐻𝑅(𝜆)

𝜋
, (3.6)  

where ρHDR is the hemispherical directional reflectance which characterizes the reflected 

irradiance in a particular direction if the facet were illuminated by a perfectly diffuse 

source and ρDHR is the directional hemispherical reflectance which is the ratio of the total 

reflected irradiance to the directional incident irradiance.  Using the Lambertian 

simplification of Equation (3.6) and recognizing that thermal emission is dominated by 

solar irradiance in the VNIR/SWIR region (i.e. Le ≅ 0), Equation (3.1) simplifies to  

 
𝐿𝑝(𝜆) =

𝜏𝑎(𝜆)𝜌𝐷𝐻𝑅
𝜋

[𝐸𝑠(𝜃𝑠,𝜙𝑠, 𝜆) + 𝐸𝑑(𝜆)] + 𝐿𝑎(𝜆), (3.7)  

where Ed(λ) can be approximated by  

 𝐸𝑑(𝜆) = Ωd𝐿𝑑(𝜆), (3.8)  

if the angular dependence of the downwelling irradiance is ignored and Ωd is the solid 

angular region of the unobstructed sky.  While DIRSIG can handle specular facets, 

Equation (3.7) describes the radiative transfer equation DIRSIG uses (along with 

MODTRAN to calculate the path transmission, solar irradiance, downwelling and path 

radiance terms) to trace rays through a scene, off diffuse facets, and back up to the sensor 

to calculate at-aperture radiance. 
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 DIRSIG handles interaction with the atmosphere, including both transmission and 

scattering effects, using MODTRAN.  MODTRAN has been under development by the 

Air Force Research Laboratory since 1987 and is a well verified and common tool for 

atmospheric propagation modeling for the community (Berk, et al., 1998).  DIRSIG 

modeling incorporates both reflected and emitted radiation as well as multiple bounce 

interactions.  For example, a target in a scene may be illuminated directly by the main 

source in the scene, but may also receive reflected illumination from nearby objects. 

 DIRSIG also includes the capability to model bidirectional reflectance 

distribution functions for materials that are included in a scene.  For the purposes of this 

work, however, all materials in the scene were assumed to be Lambertian materials.  For 

BRDF to be included in the material properties, identified materials would need to be 

matched to laboratory measured BRDFs.  Including a BRDF for the scene materials is 

beyond the scope of this work, but could be an area for future research. 

 Materials in DIRSIG are defined spectrally using their surface emissivity as a 

function of wavelength.  Another simplification is used here in that all materials in the 

autonomously generated scenes are assumed to be opaque and at thermal equilibrium.  

Using these assumptions and conservation of energy, material transmissions are zero and 

material emissivities are equal to material absorption.  Kirchoff’s law thus allows the 

determination of emissivity from reflectance, the value obtained from atmospherically 

compensated HSI, by simply subtracting reflectance from one as shown in Equation (3.9) 

below:  

 𝐸𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 = 1 − 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒. (3.9)  
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 Thermodynamic properties of materials can be included in DIRSIG, but are also 

ignored for this work because these properties are not directly measured by the three 

modalities used here and are negligible effects in the VNIR/SWIR region considered in 

this work.  This limits the scenes modeled using the automated technique to visible and 

shortwave modeling only when VNIR/SWIR HSI is used.  For models to accurately 

produce imagery in the mid-wave or long-wave regimes, the spectral signatures of the 

materials in the scene as measured by the HSI would need to be matched to lab measured 

library materials that include the bulk properties necessary for accurate thermodynamic 

modeling beyond the short-wave regime.   

 Geometries in DIRSIG generally consist of three-dimensional facetized vertices.  

Multiple geometries are easily incorporated in a scene by simply specifying the insertion 

coordinate for a new object.  This is helpful for inserting a user-defined geometry for a 

target, like a plane or vehicle for instance, into an existing scene.  For this work, the 

autonomously generated scenes consist of a faceted ground and building geometry with a 

separate geometry to handle tree canopies.  In the LHD method, the ground and building 

vertices in the generated scenes are tinned using a Delaunay triangulation facetization.  

Since material transmissions are defined to be zero, it is important to handle the trees in a 

different manner so that transmission through tree canopies can occur.  Thus, instead of 

tinning vertices identified as tree vertices, a 0.5 m by 0.5 m tile is placed at each tree 

return location.  These floating tiles, while still a somewhat crude model of a tree, at least 

allow light to pass through the tree canopies so that they do not create hard shadows.  

DIRSIG can also handle voxelized geometry and mathematical geometries (such as 

spheres and cubes), but these are not currently used in the LHD method.   
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 The modeling of imaging instruments in DIRSIG is very flexible.  Most 

commonly, DIRSIG is used to provide the “at sensor” integrated radiance and the actual 

imaging system optics are not included.  Thus, the sensor is defined by focal length, the 

pixel array geometry, and spectral responsivity.  Spectral responsivity can be defined 

using basic functional shapes like Gaussian or triangular centered on a wavelength, or can 

be completely manually defined using a modeled or measured spectral responsivity. 

 The final steps in generating synthetic imagery with DIRSIG are to specify the 

sensor location over the scene, including any motion if the sensor captures continuously 

like a push broom or whisk sensor, and time of the collect.  The user can also specify 

multiple truth output files like scene geometry or material map to gain access to what is 

often the most useful feature and purpose of any such modeling:  Perfect ground truth. 

3.2 DIRSIG Scene Components 

 DIRSIG scenes consist of three-dimensional, facetized surfaces attributed with 

spectral and texture information.  The scenes can be generated in a number of ways and 

to varying degrees of fidelity in both their spatial and spectral resolution, as well as their 

thermodynamic properties.  However, this research deals only with visible through short-

wave infrared wavelengths, so thermodynamic properties are ignored.   

Scenes like DIRSIG’s MicroScene2, a scene which is available for download to 

DIRSIG users and models Camp Eastman in Rochester, NY, consists of carefully built 

trees that are placed within the scene to accurately match the real trees at the modeled 

site.  The creators of this scene used specialized tree growing software which allows the 

trees to be modeled down to the individual leaves and pine needles.  Scenes with this 
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level of fidelity are therefore very good for HR simulations, but the time involved in 

generating them and the amount of memory needed to model to such a high resolution 

limits the size of the scene. 

For large area scenes, DIRSIG users have a few options available for download.  

One of those options is MegaScene1, which was built around 2002 and models 

Irondequoit, NY, a suburb of Rochester, NY.  This scene consists of a general ground 

geometry which is classified using an overlaid material map and includes texture using an 

overlaid texture map.  Geometry above the ground level, representative trees and 

buildings, are individually constructed and planted in the scene to match the actual 

locations, if not the exact building or tree type, of the real structures and trees.  This scene 

currently has approximately one meter resolution with a massive rebuild underway using 

the CityEngine software package.  Inputs for this scene therefore include the ground-

geometry digital elevation map, some aerial imagery which provides the texture map and 

material map, spectral measurements made using portable field spectrometers, and 

geometric measurements for placing buildings and trees within the scene.  Construction 

of a medium fidelity scene like this takes months and thousands of man hours to collect 

the field measurements and then actually build the scene.  As a result, there are few of 

these large area scenes available for the DIRSIG user community.  Thus, DIRSIG is 

limited in its ability to model sensors with wide fields of view, not because it lacks the 

capability to perform the modeling, but because the few available large scenes may not 

be representative of the environment in which the user intends to deploy the sensor. 

To address this problem, this research proposes to automate the entire process of 

generating large area scenes.  Fortunately, with the increased collection of HR imagery, 
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hyperspectral imagery, and lidar, the necessary components to build scenes of many real 

world sites are available.  Automated scene generation is therefore possible by gathering 

the datasets, fusing them, and extracting the necessary geometry, texture, and spectral 

information in the format DIRSIG requires for a scene.   

3.3 Registration 

 Before the scene inputs needed for DIRSIG can be extracted from the input 

modalities, a high-confidence and robust registration method must be used to register the 

modalities.  The Walli registration method used in this research is based on a registration 

technique which finds potential match points using SIFT, refines the set of matched 

points using two iterations of the RANSAC algorithm where epipolar and homogeneous 

constraints are enforced, and then settles on a final set of matched points by recursively 

eliminating high-error matches until the average RMSDE for the entire set falls below a 

user threshold (Walli, 2010).  The resulting affine transformation matrices relating the 

three modalities allow the extracted DIRSIG inputs to be properly related and overlaid so 

that the scene can be accurately modeled. 

 3.3.1 Image Preparation for Registration 

 Before SIFT is used to detect and match keypoints, the input modalities must be 

prepared for registration.  First, the higher resolution inputs are resampled to the HSI 

Ground Sample Distance (GSD) using a bilinear interpolation. The RGB image is 

converted to grayscale by “eliminating the hue and saturation information while retaining 

the luminance” using MATLAB’s rgb2gray function (MATLAB, 2010).  Representative 

spectral bands are then selected from the HSI (~450 nm, ~550 nm, and ~650 nm for the 
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RGB image and ~1060 nm for the rasterized lidar return strength).  A weighted selection 

of multiple HSI bands could be used to better approximate the light gathered by the HR 

bands, but selecting just the narrow center-wavelength RGB bands from the HSI proved 

to be sufficient for registration.  Next, the red, green, and blue center-wavelength HSI 

bands are converted to grayscale using the same process as on the HR imagery.  Finally 

all inputs are histogram equalized to a flat histogram using MATLAB’s histeq function 

(MATLAB, 2010).  A flowchart of the image preparation process is shown below in 

Figure 2.  

 
Figure 2.  Flowchart of data preparation before registration process leading to the 
output affine transformations relating the three input modalities. 
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3.3.2 Using SIFT to Determine Potential Matches 

After the input imagery is appropriately prepared, the registration method begins 

with the SIFT, or Scale-Invariant Feature Transform, algorithm.  The SIFT algorithm is 

an edge detection algorithm developed by David Lowe (Lowe, 2004).  The algorithm 

accepts two grayscale images as input and then identifies invariant keypoints in each 

image (usually on the order of 3000-5000 for a 300 by 500 pixel image).  To identify 

keypoints in an image, the SIFT algorithm first increasingly blurs the image using a 

Gaussian kernel as shown in Equation (3.10)   

 𝐿(𝑥,𝑦,𝜎) =  𝐺(𝑥, 𝑦,𝜎) ∗ 𝐼(𝑥, 𝑦), (3.10)  

where L is the output blurred image, ∗ is the convolution operator, σ is the scale factor, I 

is the input image, x and y are the coordinates in image space, and  the Gaussian kernel 

from Equation (3.10), G(x,y,σ) is defined as 

 
𝐺(𝑥,𝑦,𝜎) =  

1
2𝜋𝜎2

𝑒−(𝑥2+𝑦2)/2𝜎2 . (3.11)  

Each blurred image, L is then subtracted from the next less-blurred image to create a 

range of difference of Gaussian images: 

 𝐷(𝑥, 𝑦,𝜎) = �𝐺(𝑥,𝑦,𝑘𝜎) − 𝐺(𝑥,𝑦,𝜎)� ∗ 𝐼(𝑥,𝑦)

= 𝐿(𝑥,𝑦,𝑘𝜎) − 𝐿(𝑥,𝑦,𝜎). 
(3.12)  

The original image is then degraded to half of its original resolution and the process is 

repeated to create the next octave.  This process is shown pictorially in Figure 3 below. 

Each pixel in each difference of Gaussian image is then compared to the eight pixels 

surrounding it as well as the nine pixels above and nine pixels below in the stack of 

difference of Gaussian images to identify local maxima or minima as shown in Figure 4.   
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Figure 3.  Within each octave, the image is convolved with Gaussians of increasing 
blurring strength, and then subtracted to create the difference of Gaussian images 
(Lowe, 2004). 

 
Figure 4.  Extrema in the difference of Gaussian images are detected by comparing 
each pixel to the 26 neighboring pixels from the current and adjacent difference of 
Gaussian images (Lowe, 2004). 
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Once a local minimum or maximum is identified, a three-dimensional quadratic 

function is fit to the identified pixel to identify the interpolated actual location of the 

extremum as well as its scale.  Besides location and scale, the final step to fully define a 

keypoint is to calculate its orientation.  The SIFT algorithm calculates the direction of the 

largest gradient for pixels surrounding the extremum location.  These orientations are 

weighted using a Gaussian window and then accumulated into an orientation histogram 

as shown in Figure 5 below. 

 
Figure 5.  The neighborhood of gradient orientations and scales define the keypoint 
descriptor for each keypoint (Lowe, 2004). 

 The end result of this process is a uniquely constructed vector for each keypoint 

which contains the keypoint location, scale, and orientation.  Once identified, a matching 

algorithm uses an approximation to the Euclidean distance to find keypoints that are 

similar between the two images.  When the Euclidean distance between keypoint 

identifiers falls within the set threshold, a match is declared and the keypoint locations 

within each image are retained 
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3.3.3 Applying RANSAC to Cull Incorrect Matches 

 With the match points identified, the next step in the Walli registration process is 

the application of the RANSAC, or RANdom SAmple Consensus, algorithm to cull 

potential incorrect or poor matches.  The RANSAC algorithm works by maximizing the 

number of “inlier” matches for which the fitting function holds true up to some threshold.  

The steps of the RANSAC algorithm are shown in Figure 6. 

Objective 

Robust fit of a model to a data set S which contains outliers 

Algorithm 

1. Randomly select a sample of s data points from S and instantiate the 
model from this subset. 

2. Determine the set of data points Si which are within a distance threshold 
t of the model.  The set Si is the consensus set of the sample and defines 
the inliers of S. 

3. If the size of Si (the number of inliers) is greater than some threshold T, 
re-estimate the model using all the points in Si and terminate. 

4. If the size of Si is less than T, select a new subset and repeat the above. 
5. After N trials the largest consensus set Si is selected, and the model is 

re-estimated using all the points in the subset Si. 
Figure 6.  The RANSAC algorithm applied to cull bad matches using the epipolar 
and homography constraints (Hartley and Zisserman, 2003). 

 As an example, RANSAC could be used to determine the best fit line for a set of 

two-dimensional data points.  The fitting function in that case is y = mx + b, where x and 

y are the coordinates for each point, m is the slope, and b is the y-intercept.  Thus, the set 

S would be the collection of the x and y coordinates in the dataset.  The algorithm first 

randomly selects a pair of points and computes the perpendicular distance of all of the 

remaining points to the line generated by the two selected points.  For each point, if the 

perpendicular distance falls above a threshold (t in step 2 of Figure 6), it is labeled as an 
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outlier.  The algorithm stops once either a maximum number of iterations is reached, or 

the size of the inlier set, Si, reaches a threshold T.  T is generally determined from the 

measurement noise.  Figure 7 below shows pictorially this example application of 

RANSAC to determine a linear fit. 

 
Figure 7.  Application of RANSAC finding the best fit line for two-dimensional data 
(Hartley and Zisserman, 2003). 

 In the case of registering images in this research, the fitting functions used enforce 

the epipolar geometry constraint and homography constraint.  For the former, the 

RANSAC algorithm is applied using Zisserman's 7-Point Algorithm for determining the 

fundamental matrix relating the images in epipolar geometry shown in Figure 8.   

 
Figure 8.  Epipolar geometry for two cameras (Hartley and Zisserman, 2003). 

 In Figure 8 there are two cameras shown with their camera centers at C and C' 

and with image planes indicated by the tan parallelograms.  The matched three-

dimensional point, capital X, is the real world point which both cameras have imaged.  
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This point projects to point x in the image plane of camera C and the line formed by x 

and C, when projected onto the image plane of camera C', forms the epipolar line e'.  

Thus, for any point x in the image plane of camera C, there is a corresponding epipolar 

line e' in the image plane of camera C'.  It is along this line which all x' must exist for 

matching points.  The fundamental matrix is defined as the matrix which maps the point x 

to its epipolar line e' as seen in Equation (3.13): 

 𝐹𝑥 = 𝑒′, (3.13)  

If both sides of Equation (3.13) are multiplied from the left by the transpose of x', the 

following relationship results: 

 𝑥′𝑇𝐹𝑥 = 𝑥′𝑇𝑒′ = 0, (3.14)  

since x' lies on e', the distance between the two (x'Te' is the dot product of  x' and e') is 

zero.  Thus, the epipolar constraint enforced by RANSAC culls matches determined by 

SIFT which do not conform to an epipolar geometry.  RANSAC therefore determines the 

best fit fundamental matrix F which maximizes the number of inlier points such that x'Fx 

= 0 is true up to some threshold (i.e.  x'Fx is less than some threshold) where x' and x are 

the homogeneous coordinates of matched keypoints from the images under consideration.   

 To do this, RANSAC randomly selects seven matched points and calculates the 

fundamental matrix relating them.  It then tests the fundamental matrix against all of the 

matched points to see how many matches fall within the threshold.  The matches that are 

under the threshold are called inliers and the rest are outliers.  The algorithm iterates until 

it finds a transformation matrix which includes enough inliers that the statistical 

probability of the matches used to compute the fundamental matrix consisting entirely of 

inliers reaches 99%.  The output is the set of inliers for this 99% case (Hartley and 
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Zisserman, 2006).  However, the application of RANSAC using the fundamental matrix 

only ensures that matched points lie on the same epipolar line.   

To further cull bad matches, RANSAC is reapplied using a two-dimensional 

homography constraint in which all matched points result in the same transformation 

matrix relating the homographic coordinates of the first image to the coordinates in the 

corresponding image.  The transformation matrix relating two two-dimensional images is 

a three by three matrix and, since the imagery used in this research is all taken from the 

nadir perspective and georectified, it is assumed that the transformation matrices can be 

constrained to affine transformations and that the amount of three-dimensional ambiguity 

between the images is small.  Affine transformations can consist of a multiplicative linear 

portion and an additive offset or translation portion which can be written as 

 [𝑥 𝑦] = [𝑤 𝑧] �
𝑎11 𝑎12
𝑎21 𝑎22� + [𝑏1 𝑏2], (3.15)  

where w and z are the original image coordinates, x and y are the transformed image 

coordinates, the a matrix is the multiplicative linear portion, and the b matrix is the 

additive translation portion.  Alternatively, and better for computational convenience, the 

affine transformation can be written as a single matrix as  

 
[𝑥 𝑦 1] = [𝑤 𝑧 1] �

𝑎11 𝑎12 0
𝑎21 𝑎22 0
𝑏1 𝑏2 1

�. (3.16)  

Table 2 shows several types of affine transformations which can all be combined using 

matrix multiplication.   
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Table 2.  Common types of affine transformations (Gonzalez, Woods, Eddins, 2009). 

Identity �
1 0 0
0 1 0
0 0 1

� 
 

Scaling �
𝑠𝑥 0 0
0 𝑠𝑦 0
0 0 1

� 

 

Rotation �
cos 𝜃 sin𝜃 0
−sin𝜃 cos 𝜃 0

0 0 1
� 

 

Horizontal Shear �
1 0 0
𝛼 1 0
0 0 1

� 
 

Vertical Shear �
1 𝛽 0
0 1 0
0 0 1

� 

 

Horizontal Reflection �
−1 0 0
0 1 0
0 0 1

� 
 

Translation �
1 0 0
0 1 0
𝛿𝑥 𝛿𝑦 1

� 
 

Under the homography constraint, RANSAC randomly chooses sets of matches 

and determines the affine transformation matrix which relates the coordinate systems of 

the two images under consideration.  As in the case of the fundamental matrix constraint, 

it iterates until a transformation matrix is found such that the probability of the set of 

points used to create the transformation matrix consisting entirely of inliers reaches 99%.  

Careful consideration must be used here as the two-dimensional homography requires a 

planar relationship between images and so can declare valid matches as outliers if there 

are significant terrain relief differences embedded in the image.  This step eliminates any 

matches which satisfy the RANSAC fundamental matrix step of lying on the same 
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epipolar line, but do not satisfy the constraint that the transformation matrix relating the 

two coordinate systems should be the same regardless of the matches used in its 

determination.   

3.3.4 RMSDE Minimization 

The final component of the Walli registration method finds the set of matches 

resulting in a transformation matrix with an average RMSDE that falls below a user set 

threshold.  The remaining matches after RANSAC are fed into MATLAB's cp2tform 

(control points to transformation matrix) function (MATLAB, 2010).  The cp2tform 

function determines the best fit transformation matrix, again limiting to affine 

transformations, relating coordinate systems of the matched points.  The RMSDE for 

each matched pair is then calculated using Equation 3.17: 

 𝑅𝑀𝑆𝐷𝐸 =  �(𝑥 − 𝑇𝑥′)2, (3.17)  

where x is the homogeneous coordinate of a match in one coordinate system, x' is the 

homogeneous coordinate of the match in the other coordinate system ,and T is the 

determined transformation matrix relating the two.  If the average RMSDE for all of the 

pixels is higher than the user-specified threshold, the match with the highest RMSDE is 

thrown out and the algorithm restarts.  This loop iterates until the average RMSDE falls 

below the user-specified threshold or until so many matches are thrown out that the 

transformation matrix can no longer be determined, in which case the threshold is set too 

low for the set of determined matches or not enough matches are determined in the first 

place.  The flowchart in Figure 9 shows the Walli registration process pictorially. 



41 

 
Figure 9.  Flowchart of the Walli registration method used to register the three 
input modalities. 

3.4 Chapter Summary 

 Automating the generation of three-dimensional scenes attributed with texture and 

spectral information involves a number of various disciplines.  This chapter attempts to 

highlight the pieces most important to this work including the physics involved in the 

DIRSIG software package and a thorough presentation of the Walli registration 

techniques used to relate the input modalities.  While previously used only to register 
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lidar and HR imagery, the Walli method is robust enough to include the HSI modality.  

The method is therefore included in the LHD method as the first step to relate the three 

input modalities.   
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IV. Automated Scene Extraction Methodology 

4.1 Chapter Overview 

 This chapter presents the methods used to extract the geometry, texture, and 

spectral components of the synthetic scenes using the LHD method.  Before the 

methodology is discussed, however, the two datasets used to develop and test the 

methods are presented.  The first datset is a DIRSIG-generated HR RGB, lidar, and HSI 

dataset produced using a high-fidelity scene of the VanLare wastewater treatment plant 

near Rochester, New York.  The second dataset is a real collect from the NEON 

prototype data collect over Melrose, Florida.  These two datasets are used throughout the 

rest of the chapter to show example inputs and outputs for each step in the scene 

extraction process.   

 Next, the registration process is shown with results for each dataset followed by 

the methods for geometry and texture map extraction.  Following the geometry and 

texture map extraction, the chapter presents three approaches to automated extraction of 

the material map.  Approach 1 is a non-fused approach in which the HSI alone is used to 

generate the material map and spectral library.  The second and third approaches attempt 

to improve the resolution and accuracy of the material map by fusing the HSI, lidar, and 

HR information.  While it does not produce satisfactory results and is not fully 

automated, Approach 2 is included for its importance in developing Approach 3 and as a 

method which could be further developed in future research.  The second fused approach, 

Approach 3, is a fully automated, fused method which produces HR material maps.  The 
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final section presents the method used to extract the scene spectral library using the 

material maps resulting from Approach 1 and Approach 3.   

4.2 Introduction to the Datasets 

The DIRSIG-generated synthetic dataset consists of HR RGB imagery, HSI, and 

lidar data created by flying the respective simulated sensors for each of those modalities 

over a high-fidelity, three-dimensional scene of the VanLare wastewater treatment plant 

near Rochester, New York.  Because the dataset is synthetic, perfect ground truth and 

knowledge of the sensor and its locations are available, and thus DIRSIG generated 

products using the autonomously recreated scene can be compared to the original 

DIRSIG products created using the original high-fidelity scene with identical sensor 

parameters, solar illumination, and atmospheric conditions.  The second dataset consists 

of lidar and HSI from the NEON prototype collect over the Ordway Swisher Biological 

station near Melrose, Florida along with HR imagery over the same site provided by the 

Florida Department of Transportation (Krause and Kuester, 2011). 

4.2.1 VanLare Wastewater Treatment Plant Synthetic Dataset 

 The VanLare dataset is a DIRSIG-generated dataset consisting of synthetic 

imagery and lidar data meant to be representative of the real NEON dataset introduced 

below with 0.3 meter GSD RGB imagery, an aerial HSI sensor with 3.0 meter GSD, and 

an aerial lidar sensor with approximately 1.0 meter posting.  All imagery and lidar 

collected over the VanLare scene are captured from a nadir viewing geometry.  The high-

fidelity three-dimensional scene consists of the buildings, holding tanks, and surrounding 

forest and grass area of the VanLare wastewater treatment plant near Rochester, New 
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York.  The scene was built by the DIRSIG development team using geometry drawn 

from an existing model of the site in Google Earth and enhanced with HR texture and 

material maps by Walli (Ientilucci and Brown, 2003; Walli, 2010).  The buildings in the 

scene are attributed with HR material and texture maps for both horizontal and vertical 

surfaces ensuring good spectral accuracy for any viewing angle.  Finally, spectral 

information is attributed by performing image segmentation on the texture maps and 

manually assigning material spectra from a spectral library populated with field spectra 

acquired throughout the scene (Walli, 2010).  The modeled RGB, hyperspectral, and lidar 

sensors used to produce the synthetic images for input into the LHD method are modeled 

as idealized frame cameras without pointing or noise error.  DIRSIG allows for the 

consideration of these parameters and future studies could investigate their effect of noise 

and pointing error on the LHD process.  The synthetic images used for registration are 

shown in Figure 10.  

4.2.2 NEON Prototype Collection over Ordway Swisher Biological Station 

The National Ecological Observatory Network is a data collection project 

designed to assess climate change across the United States.  The prototype HSI and lidar 

dataset collected by the NEON project in November of 2010 is available to the public.  

The HSI and lidar data from this collect along with HR imagery from the Florida 

Department of Transportation are used here to provide a test of the robustness of the 

LHD method as well as provide a qualitative and quantitative evaluation  resulting 

autonomously synthetic scenes. 
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Figure 10.  The input DIRSIG generated synthetic imagery. Top:  HR imagery, 
Middle:  Lidar elevation and return strength and Bottom: HSI captured over the 
modeled VanLare Wastewater Treatment Plant near Rochester, NY. 

  Both the lidar and HSI are from the Ordway Swisher Biological Station portion 

of the NEON collect which includes parts of the town of Melrose, Florida.  The lidar 

collect has an approximately one meter posting and the HSI, collected by NASA’s 

AVIRIS hyperspectral imager and converted to reflectance using FLAASH, has a 3.4 

meter GSD.  AVIRIS has 224 bands across the 400 to 2500 nm spectral range with each 
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band spanning approximately 10 nm.  The HR imagery is provided by the Florida 

Department of Transportation website and has an approximate GSD of 0.3 meters.  The 

original images used for registration are shown in Figure 11 below. 

 
Figure 11. The NEON input dataset captured near Melrose, Fl.  Clockwise from top 
left:  HR RGB imagery, AVIRIS HSI, lidar return strength, and lidar elevation. 

4.3 Image Registration 

 The input modalities are prepared for registration by following the image 

preparation flowchart shown in Figure 2 of Chapter III.  For the lidar, only the first 
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returns of the lidar are used and the data consist of the X, Y, Z coordinates in UTM 

format along with the infrared (IR) return strength.  The IR returns are rasterized using 

MATLAB’s TriScatteredInterp function resulting in an intensity image at the 

illumination laser wavelength of 1064 nm.  The higher resolution inputs (RGB and 

rasterized lidar) are then resampled to the HSI Ground Sample Distance (GSD) using a 

bilinear interpolation.  The RGB image is then converted to grayscale using MATLAB’s 

rgb2gray function (MATLAB, 2010).  Representative spectral bands re then selected 

from the HSI (~450 nm, ~550 nm, and ~650 nm for the RGB image and ~1060 nm for 

the rasterized lidar return strength).  Next, the red, green, and blue HSI bands are 

converted to grayscale using the same process used for the HR imagery.  Finally all 

inputs are histogram equalized to a flat histogram using MATLAB’s histeq function 

(MATLAB, 2010).  The resulting grayscale images prepped for registration are shown in 

the top row of Figure 12 below.  

 Following the Walli registration flowchart in Figure 9 of Chapter III, the second 

row of Figure 12 shows the SIFT matches for both the high-res to HSI and lidar-to-HSI 

registrations and the bottom row shows the surviving matches (in green) after culling by 

RANSAC using the fundamental matrix and homographic constraints followed by the 

average RMSDE minimization to under 0.25 pixels average RMSDE (at the HSI GSD). 

The resulting transformation matrices for each registration are shown below in Table 3 

along with the number of remaining matches after culling.  

Following the same image preparation procedures for the Melrose collect, the 

FLDOT RGB imagery is registered to similar red, green, and blue HSI bands and the 
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rasterized lidar return strength is registered to the HSI band nearest the 1064 micron lidar 

illuminating laser. 

 
Figure 12.  Left:  Each step of the HR to HSI registration process showing the 
original images side by side (top), match points detected by SIFT in light blue 
(middle), and remaining good matches in bright green after culling (bottom), Right:  
The same steps for the lidar-to-HSI registration. 
Table 3.  HR-to-HSI and lidar-to-HSI registration results 

High res to HSI Transformation 
Matrix 

 Lidar-to-HSI Transformation Matrix 

0.9867 -0.00003 0  1.0084 0.0003 0 
-0.00003 0.9867 0  -0.0003 1.0084 0 
-18.4149 -9.2216 1  -28.0693 -35.5933 1 

RMSDE Average: 0.2483 pixels  RMSDE Average: 0.2453 pixels 
Matches Remaining: 306  Matches Remaining: 49 

The two registrations are shown in Figure 13 below with the RGB to HSI registration on 

the left and lidar-to-HSI registration on the right.  The resulting registration matrices and 

match information are shown in Table 4.   



50 

 
Figure 13.  Left:  Each step of the HR-to-HSI registration process showing the 
original images side by side, match points detected by SIFT in light blue, and 
remaining good matches after culling in green, Right:  The same steps for the lidar-
to-HSI registration. 
Table 4.  HR-to-HSI and lidar-to-HSI Registration Results 

High-res to HSI Transformation 
Matrix 

 Lidar-to-HSI Transformation Matrix 

0.9103 0.0087 0  0.9671 -0.0091 0 
-0.0113 1.0500 0  -0.0029 0.9658 0 
-10.6637 7.9622 1  0.8411 12.0426 1 

RMSDE Average: 0.4996 pixels  RMSDE Average: 0.4800 pixels 
Matches Remaining: 58  Matches Remaining: 20 

Transformations from one image coordinate system to another are all applied using 

bilinear interpolation unless transforming from the HSI coordinate system .  For 
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transformations from the HSI coordinate system, nearest neighbor interpolation is used to 

prevent the spectral component from being polluted with spatial variation. 

4.4 Extraction of Scene Geometry 

 As discussed in the DIRSIG Scene Components section of Chapter III, DIRSIG 

scenes consist of facetized three-dimensional geometries.  For this research, the 

geometries are input into DIRSIG using the common .obj file format also known as the 

wavefront format.  This format consists of a list of the positions of all of the vertices 

followed by a list containing the vertex indices which make up each facet in the scene.  

Initially, these geometry files were generated directly from the input lidar point clouds 

using a Delaunay triangulation function in MATLAB to generate the facet list.  However, 

it became apparent that this simple tinning technique, while sufficient for ground and 

solid objects within the scene, is not sufficient for handling objects like tree canopies 

which should allow some light to pass through.  Thus, it is necessary to identify and 

separate ground and building lidar returns from tree canopy lidar returns to allow a 

different treatment of the tree canopies. 

 The tree returns are separated from ground returns by first rasterizing the lidar 

point cloud then performing a morphological opening using MATLAB’s imopen function 

with a 20 pixel radius disk as the structuring element.  The morphological opening of a 

grayscale image, like the rasterized lidar elevation map, eliminates peaks which are too 

narrow for the structuring element to fit into.  Figure 14 shows pictorially the 

morphological opening of a grayscale “image” in one dimension. 
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Figure 14.  Demonstration of a grayscale morphological opening in one dimension. 

The result is a ground terrain map which is then subtracted from the original rasterized 

elevation map to create an above ground elevation map including any trees and structures 

in the scene which are smaller than the structuring element.  Trees are separated from 

buildings by taking advantage of the higher local standard deviation over vegetation 

when compared to man-made structures.  An above ground standard deviation map is 

created using MATLAB’s stdfilt function and then thresholded to generate a tree mask 

(MATLAB, 2010).  The ground and building map is then generated by replacing tree 

pixels in the original elevation map with pixels from the ground terrain map.  The ground 

and building map is then facetized using the “Delaunay” function and the tree map is 

used to generate half-meter square tiles to represent trees.  The separated geometries are 
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then written out into the standard .obj format which DIRSIG can use directly.  Figure 15 

shows the geometry extraction process in flowchart form. 

 
Figure 15.  The geometry extraction process developed for the LHD method. 

Using the process above, the lidar point cloud is rasterized and tree pixels are 

extracted using a morphological opening with a disc-shaped structuring element of 20 

pixel radius and then isolated from building pixels by thresholding a standard deviation 

image at 0.5 meters.  Figure 16 shows the full rasterized elevation map of the VanLare 

dataset (top left), followed by the ground terrain map resulting from the morphological 

opening (top right), the above ground terrain map from the subtraction of the ground 

terrain map from the full elevation map (bottom left), and the tree mask resulting from 

the standard deviation threshold of the above ground terrain map (bottom right). 
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Figure 16.  Top left:  The full rasterized lidar elevation, Top right:  The ground 
terrain map, Bottom left:  The above ground terrain map, Bottom right:  The tree 
mask used to extract tree pixels from the original full elevation map. 

The x, y, and z coordinates are then output into separate point clouds:  One for the ground 

and buildings and one including only the trees.  The ground and building point cloud is 

facetized and written out into standard .obj format.  At each tree return, a half-meter 

square facet is added to the .obj file.  While a half-meter facet size is used here, 

appropriate adjustment would be required for higher or lower resolution input lidar data.  

The resulting geometry, rendered using Meshlab (Visual Computing Lab, 2014), is 

shown in Figure 17.  The resulting geometry for the Melrose scene using the same 

extraction approach is shown below in Figure 18 as a Meshlab rendering (Meshlab, 

2014).   
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Figure 17.  The resulting geometry produced from the synthetic “original” images 
written in obj format and rendered using Meshlab. 

 

Figure 18.  Meshlab-rendered geometry extracted from the NEON lidar collected of 
Melrose, Florida with tree returns separated from ground returns and modeled as 
half-meter tiles. 
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4.5 Extraction of Scene Texture Maps 

The most easily generated of the three scene components is the texture 

component.  The texture component is drawn directly from the HR RGB image bands 

which are transformed to lidar space using the registration results and bilinear 

interpolation.  The transformed images are then draped over the scene geometry.  

DIRSIG allows users to set up multiple texture maps to cover different spectral regions.  

Thus, three texture maps are generated here using the red, green, and blue bands of the 

HR imagery to create red, green, and blue texture maps covering the 0.6 µm to 0.7 µm, 

0.5 µm to 0.6 µm, and 0.4 µm to 0.5 µm regions respectively.  DIRSIG also allows users 

to specify material specific means and standard deviations for each texture map.  These 

numbers are extracted by transforming the material map (generated using one of the 

approaches presented below) to the HR space using the registration transformation matrix 

and nearest-neighbor interpolation to identify material regions of interest for which 

intensity means and standard deviations for each material class are calculated.  The final 

step in preparing the texture maps is to calculate the insertion point into DIRSIG.  This is 

the upper left point of the image transformed to the lidar coordinate system and can be 

found by multiplying the (1,1) coordinate by the series of affine transformations used in 

the image preparation and found in the registration process.  Appendix 1 provides a 

detailed explanation of how to calculate the insertion points for the texture and material 

maps.  The resulting texture maps for the VanLare dataset are shown in Figure 19 and for 

the Melrose dataset in Figure 20.   



57 

 
Figure 19.  Left to right:  The red texture map, green texture map, and blue texture 
map transformed to the lidar coordinates to be draped over the scene geometry in 
DIRSIG. 

 
Figure 20.  Left to right:  The red, green, and blue texture maps generated by 
transforming the FLDOT RGB imagery to lidar space using the registration results. 

4.6 HSI-only Material Map Extraction:  Approach 1 

This section details the first of three methods attempted in this research to fully 

automate the generation of a three-dimensional scene attributed with texture and spectral 

information (Givens, et al., 2012).  Unlike Approaches 2 and 3 which are presented in the 

next two sections and use a fused approach, Approach 1 uses the hyperspectral input 

alone to generate a material map and associated material library.  It uses a common 

unsupervised classification routine called the Stochastic Expectation Maximization 

(SEM) method which employs a randomized approach to classification by Mahalanobis 

distance thereby allowing some class overlap.  A more detailed description of the 

mathematics behind the SEM algorithm is beyond the scope of this dissertation, but it has 

been shown to be highly effective in hyperspectral data processing (Eismann, 2012).   
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Besides being selected for its common use in the field, SEM is fully unsupervised 

meaning that it requires no user input to perform scene classification and it therefore 

fulfills the goal of this research to fully automate the generation of DIRSIG scenes.  In 

general, the strategy for accomplishing spectral image classification consists of feature 

extraction, spectral classification, and class labeling with the end result being the material 

map as shown below in Figure 21. 

 
Figure 21.  Process of extracting a material map from sensor data (Eismann, 2012). 

However, since a material can be designated simply by a number or some semantic name 

like grass or tree for DIRSIG, and the material spectra are pulled directly from the HSI, 

the final step of class labeling, at least semantically, is not necessary.  If material 

information like bulk properties, BRDF, or other information not available directly from 

the HSI were to be included, the class labeling step would be required in the form of 

matching spectra from the HSI to some spectral library where the extra information is 

available.     

 The SEM algorithm runs on the hyperspectral image cube alone.  SEM is a 

quadratic clustering algorithm, meaning it assumes pixels (spectra) within hyperspectral 

imagery fall within clusters in some N-dimensional space using some distance metric and 

that the decision line (or N-dimensional surface) separating the classes can be described 

by a quadratic equation as illustrated in Figure 22.   
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Figure 22.  Illustration of quadratic classifier (Eismann, 2012). 

 Before running the SEM algorithm, Approach 1 uses principal components 

analysis (PCA) to reduce the dimensionality of the hyperspectral cube both to improve 

performance of the SEM algorithm by choosing axes which maximize the variance 

between bands and thus the distance between clusters, and to reduce the number of bands 

used in the distance calculation and thus reduce processing requirements.  The PCA is 

useful when dealing with HSI due to the large correlation between spectral bands (i.e. 

changes in radiance or reflectance over the small spacing of HSI spectral bands is 

generally small).  The PCA computes the eigenvalues and eigenvectors of the correlation 

matrix for the HSI cube and then projects the HSI cube onto those eigenvectors in order 

of decreasing eigenvalue (and thus decreasing variance captured per band).  The result is 

a new principal component cube in which bands are both uncorrelated and sorted in order 

of decreasing variance.  Additionally, by adding the eigenvalues of some subset of the 
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principal component cube and dividing by the sum of all of the eigenvalues, the percent 

of variance captured in the reduced set is known.  Again ,due to the high correlation 

between spectral bands of HSI, a generally much smaller number of the PCA bands can 

be used for operations like classification while retaining nearly all of the variance of the 

original HSI cube.  This process is known as dimensionality reduction (Eismann, 2012).   

The only input to the SEM algorithm, besides the dimension-reduced HSI, is the 

initial number of classes in which to assign the spectra.  This number is generated from 

the linear mixing model rule of thumb that the number of classes in the scene is equal to 

the number of significant principal component bands plus one (Eismann, 2012).  While 

this assumption is based on the linear mixing model, which is not used in the Approach 1 

classification of the scene, this common dimensionality reduction technique at least gives 

a reasonable estimate for the number of materials in the scene.  Determining the number 

of significant bands could be approached using statistical methods to estimate noise in the 

data, but is accomplished here by simply thresholding the amount of variance captured to 

99.95%.  Future research could potentially eliminate the requirement for this user-

specified thresholding of the variance by determining the threshold from an estimation of 

the noise in the data (Chang and Du, 2004; Eismann, 2012).  

For the VanLare scene, the 99.95% variance captured threshold is met by 

retaining the first seven principal component bands, representing a maximum of eight 

classes.  The plot in Figure 23 shows the cumulative percent variance captured for each 

of the first ten principal component bands in the VanLare HSI.   
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Figure 23.  Cumulative percent variance captured for each of the first ten principal 
component bands of the VanLare HSI. 

The SEM algorithm is then applied to the reduced dimensionality PCA cube.    

With the VanLare HSI reduced to seven principle component bands and the need for 

eight material classes identified, the inputs for the SEM algorithm are ready.  Once the 

algorithm runs, the output is a material map at the GSD of the HSI shown in Figure 24.  

This material map is then input into DIRSIG after performing the image transformation 

resulting from the lidar-to-HSI registration.  The flowchart showing each of the steps in 

Approach 1 is displayed in Figure 25. 

Applying the same Approach 1 to the Melrose scene, the first step is the 

dimensionality reduction using principal component analysis to determine the initial 

number of classes for the SEM algorithm.  For the AVIRIS HSI collected over the 

Melrose site, 14 principal component bands were needed to capture the 99.95% variance 

threshold.  Thus, 15 classes were used to initiate the SEM algorithm.   
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Figure 24.  SEM material map and example mean spectrum for one of the classes. 
The resulting material map is shown below in Figure 26.  Note that the darkest blue color 

on the left of the image is masked from the SEM algorithm and not assigned to a class 

since the HSI is not available there. 

 While the non-fused Approach 1described above successfully automates the 

generation of a material map for a synthetic scene, it fails to take advantage of the 

information of the HR imagery and lidar data to potentially improve the classification 

resolution and accuracy.   
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Figure 25.  Flowchart of Approach 1. 

    

 
Figure 26.  The material map resulting from the application of SEM on the input 
AVIRIS HSI using 15 initial classes. 
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 With the material map at a much lower resolution than the scene texture maps and 

geometry, output synthetic imagery created using the low-resolution material map tends 

to show pixelation if the modeled sensor GSD is smaller than that of the input HSI. This 

pixelation is particularly evident along the edges of sharp material transitions like the 

grass and dirt edges in the playing fields of the Melrose scene.  Since the other two higher 

resolution modalities are available and registered to the HSI in the LHD method, 

possibilities exist for the sharpening of the HSI material map.   

4.7 Fused, Least Squares Unmixing Material Map Extraction:  Approach 2 

The second approach to scene classification performs an unmixing of the 

hyperspectral cube and then relates material percentages within each HSI pixel to spatial 

information found in the HR imagery and rasterized lidar elevation and return strength 

(Givens, et al., 2013).  This method applies the linear mixing model in which each pixel 

in the scene is assumed to be a linear combination of all of the pure materials 

(endmembers) in the scene.  Ideally, the abundance coefficients for each material should 

fall between 0 and 1, representing the percentage of each endmember material in the 

pixel, with the sum of the coefficients adding to 1.  This model is appealing due to its 

intuitive description of the physics, but unfortunately is difficult to apply using real data 

because of the typically unavailable perfect endmember spectra in addition to sensor 

noise and other non-linear sources of error like scattering and adjacency effects.   

While the goal of this research is to fully automate the process to build a DIRSIG 

scene, various automated approaches to selecting the endmembers for Approach 2 failed 

for both the VanLare and Melrose datasets.  Two common algorithms were tested to 

attempt this feat:  PPI and N-FINDR.  However, neither produced endmember sets which 
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appeared logical for the scene or resulted in satisfactory unmixing.  The PPI and N-

FINDR algorithms were likely not able to determine satisfactory endmembers with the 

Melrose scene either because non-linear effects like scattering, sensor noise, and 

adjacency effects exist in the scene and thus the Linear Mixing Model is a poor model for 

the scene, or pure endmember spectra do not exist in the scene. Thus, the endmembers 

presented here are chosen by hand with the justification that the automation of the 

endmember selection process would be further investigated if the rest of the unmixing 

and fusion process produced good results.   Endmembers are selected from the radiance 

HSI cube with the intent of capturing the major materials in the scene such as grass, tree, 

asphalt, and roofing material.  Manually locating pure pixels is made easier with the help 

of the registered HR imagery and lidar elevation information.  After endmembers are 

selected, per pixel abundances are calculated using the constrained linear least squares 

solver in MATLAB, lsqlin (MATLAB, 2010).  The constraints limit abundances (the 

linear coefficients) to be positive and sum to one for every pixel in the scene. 

Next, HSI pixels consisting of an endmember abundance greater than or equal to 

90% are assumed to be pure, or near pure, pixels.  These pixels are then used as regions 

of interest (ROI) to pull out elevation and color information from the lidar and HR 

imagery, respectively.  Over each endmember ROI, elevation, return strength (from the 

registered, rasterized lidar images), and red, green, and blue (from the registered HR 

image) values are averaged to create a five component material description vector.  Each 

HR pixel of the fused HR and rasterized lidar return strength and elevation cube is then 

assumed to be a pure pixel and classified as one of the endmembers using Spectral Angle 

Mapper (SAM).  To maintain the spectral content of the original HSI, the pixel 
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assignments at the high resolution are constrained to match the abundances found during 

the least squares fitting.  However, due to fitting error with these datasets, this constraint 

causes otherwise pure areas of pixels to contain some noisy, and likely incorrectly 

assigned, pixels.  Thus, the resulting material map is smoothed using the morphology 

techniques of opening and closing, which are often used together for image smoothing 

and noise removal.  Figure 27 shows a flowchart of the main steps used in Approach 2. 

 
Figure 27.  Flowchart showing the main steps of Approach 2. 

To limit processing time while during the investigation of Approach 2, the input 

modalities are cut down to the more manageable region of interest shown below in Figure 

28.  The region is selected for its spatial variability in materials and its range in elevation 

(the trees and buildings) to show the value of the added information from the fused HR 

imagery and lidar data.  
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Figure 28.  Left to right:  Florida DOT HR imagery, rasterization of the NEON 
lidar elevation, and color composite of the NEON HSI showing the reduced ROI 
used to investigate the linear unmixing fusion approach. 

As previously mentioned, this Approach is not yet fully automated and thus 

endmembers are selected by hand using the information in the registered modalities.  For 

this example subset of the Melrose scene, eight endmembers are hand-selected: grass, 

tree, asphalt, parking lot, red roof, brown roof, and white roof with and without glare.  

Figure 29 below shows the radiance plots of the eight endmembers.  

 
Figure 29.  The Radiance spectra of the eight hand-selected endmembers used to 
perform linear unmixing of the HSI. 
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The eight endmembers are then input into MATLAB’s linear least squares solver, linlsq 

with the constraints that all abundances are positive and sum to one. The resulting 

abundance maps are shown below in Figure 30.  The second row of the figure shows 

where abundances are higher than 90%.  These are considered pure pixel regions and 

used to define the ROIs of each of the endmembers which are then used to pull 

endmember attributes out of the HR and rasterized lidar imagery. 

 
Figure 30.  The top row shows abundance maps for each of the eight endmembers 
where numbers 1 through 8 correspond to endmembers grass, tree, asphalt, parking 
lot, red roof, brown roof, white roof with glare, and white roof without glare, 
respectively. The bottom row shows the pure pixel ROIs where each of the 
abundance maps contain pixels with abundances greater than 90%. 

 New material description vectors are defined by averaging over the HR and 

rasterized lidar values for the pure pixels of each class.  The result is a five component 

description vector for each material class consisting of a red, green, and blue intensity 

value from the HR imagery and an elevation and return strength value from the rasterized 

lidar imagery averaged over the pure ROIs for each material.  Table 5 shows the five 

components for each of the endmember-based materials. 

 With new material vectors calculated, each five-component pixel vector from the 

fused HR and lidar elevation and return strength cube are compared with and assigned to 

the endmember it most resembles.   
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Table 5.  Material attributes calculated by averaging over HR red, green, and blue 
values and rasterized lidar elevation and return strength values. 

 Red 
(intensity) 

Green 
(intensity) 

Blue 
(intensity) 

Elevation 
(m) 

Return 
Strength 

(intensity) 
Grass 92.1 109.6 81.8 43.1 55.1 
Tree 59.7 78.5 63.3 87.7 19.5 
Asphalt 88.5 105.5 91.5 40.4 24.3 
Parking Lot 128.9 145.5 125.0 40.7 35.6 
Red Roof 82.5 88.5 74.0 56.5 17.1 
Brown Roof 106.8 111.1 83.5 58.8 17.1 
White Roof 
(with glare) 232.3 243.9 241.9 61.2 49.0 

White Roof 
(without 
glare) 

145.0 177.2 179.1 62.0 44.9 

The method used for this step is Spectral Angle Mapper.  For every pixel in the fused 

HR, lidar elevation, and lidar return strength cube, the angle between its five component 

vector and the five component vector of each of the eight endmembers is calculated.  

Where the smallest angle occurs, the pixel is assigned as that endmember in a final 

material map with the constraint that the final abundances of the HR material map must 

average over the area of the corresponding HSI pixel to equal the abundances calculated 

by the linear least squares unmixing used on the HSI alone.  This final constraint ensures 

that, on average, the subpixel results cannot change with respect to the spectral content of 

the original HSI.  The constraint is met by assigning pixels in order of least abundant to 

most abundant endmember in the HSI pixel.  For example, if a single HSI pixel mixture 

is found to be 5% grass and 95% tree and that HSI pixel covers a ten-by-ten pixel area at 

the high resolution, the five pixels with the smallest difference in spectral angle from the 
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grass class are assigned as grass and the remaining 95 pixels are assigned as tree. The 

resulting material map using this method is shown below in Figure 31. 

 
Figure 31.  Material map showing SAM results constrained to HSI linear least 
squares unmixing abundances. 
 

In cases where a relatively small number of endmembers are used to describe a 

scene, materials are likely to be continuous over small spatial areas.  Using this 

assumption, morphology techniques are applied to smooth the classification image.  An 

opening followed by a closing using a small structure element disk of radius three (which 

is actually a three by three square due to the limited number of included pixels) reduces 
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some of the noise caused by probable incorrect assignments in an otherwise continuous 

region.  The result after smoothing is shown in Figure 32 below along with the HR image 

for comparison and a magnified material map resulting from performing SAM using the 

HSI spectra of the same endmembers and only the original HSI cube.  Note that by using 

only the HSI information, SAM has trouble distinguishing road from the asphalt shingles 

of the roofs and parking lot from asphalt. 

 
Figure 32.  Left to right:  The resulting material map after performance of 
morphological opening followed by closing, HR image shown for comparison, SAM 
classification performed on the original HSI for comparison. 

While this linear unmixing fused method of Approach 2 does provide an 

improvement in edge information over the material map resulting from the application of 

SAM on the HSI alone, the HR material map still appears to include an unsatisfactorily 

high number of incorrectly identified pixels.  This is likely due to the imperfect 

endmember spectra, even though they are selected by hand, and the strict enforcement of 

the determined abundances using those endmembers when performing pixel assignment 

at the higher resolution.  While further efforts could be employed to attempt to improve 

this method, the next fusion approach provides better results with less effort. 
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4.8 Fused ISODATA Material Map Extraction:  Approach 3 

The final and most successful approach for automating the generation of a 

material map using all of the information available begins with the HR and rasterized 

lidar elevation and return strength to perform image segmentation before incorporating 

the spectral information of the HSI (Givens, et al., 2013).  Generally, the RGB imagery 

has the highest resolution of the three modalities.  However, in many cases the RGB 

imagery has shadowing and thus classification of the RGB imagery alone can result in a 

shadow class which is not a proper scene material.  With the desired output being a 

material map that can be used to generate a three-dimensional model of the scene, the 

presence of a shadow class creates areas of shade in the scene regardless of how the scene 

is illuminated in the model, and thus reduces its utility for modeling illumination angles 

other than the one under which the original RGB is captured.  To avoid a shadow class in 

the material map, Approach 3 fuses the RGB imagery with the rasterized lidar return 

strength and elevation which lacks shadows due to its active illumination collection 

method.   

As in Approach 2, the result is a five-band cube with the first three bands being 

the red, green, and blue from the RGB image, the fourth being the rasterized lidar return 

strength, and the fifth being the rasterized lidar elevation as measured by the first return.  

To create this fused cube, the rasterized lidar bands are transformed and resampled to the 

resolution of the RGB image using the transformation matrix obtained from the 

registration method.  The shadowing and illumination angle effects in the RGB bands are 

further reduced by normalizing out the intensity at each pixel using Equation (4.1):  
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 𝑅𝑛𝑜𝑟𝑚 =
𝑅

√𝑅2 + 𝐺2 + 𝐵2
, 

𝐺𝑛𝑜𝑟𝑚 =
𝐺

√𝑅2 + 𝐺2 + 𝐵2
, 

𝐵𝑛𝑜𝑟𝑚 =
𝐵

√𝑅2 + 𝐺2 + 𝐵2
, 

(4.1)  

where R, G, and B are the original red, green, and blue values at each pixel and Rnorm, 

Gnorm, and Bnorm are the new normalized values at each pixel.  The final consideration 

before performing image classification on the fused RGB and lidar cube is weighting of 

the respective bands.  Because a shadow class is not desired and shadowing is still 

apparent, though reduced, in the color-normalized RGB image, the rasterized lidar return 

strength band is weighted higher than the color-normalized RGB bands.  The lidar 

elevation is weighted lower than the lidar return strength because, although elevation 

does help to discriminate between ground and not ground, materials that are not ground 

which have varying elevation (like angled roofs and tree canopies) are broken into 

different classes if the elevation weighting is too high.   

Preliminary image classification is then performed on the five-band cube using 

the common linear classifier, Iterative Self-Organizing Data analysis technique 

(ISODATA) (Eismann, 2012).  ISODATA performs image classification by assigning all 

pixels in the cube to a set of randomly selected initial class vectors using the nearest 

mean classification rule (minimum Euclidean distance) shown in Equation (4.2):   

 𝑑𝑞(𝒙) = �𝒙 − 𝝁𝑞�
𝑇
�𝒙 − 𝝁𝑞� = �𝒙 − 𝝁𝑞�

2
, (4.2)  

where dq(x) is the calculated distance of spectrum x from the mean spectrum of class q, 

µq.  Class means are then updated using the new class populations and the algorithm 



74 

iterates from there (Eismann, 2012).  A major advantage of ISODATA is that the initial 

number of classes specified by the user can be reduced by the algorithm if a class 

population becomes too small or increased if the standard deviation of a class becomes 

too large.  Thus, only an approximate guess of the number of classes in a scene is 

necessary.  As in Approach 1 and Approach 2, the initial guess for number of classes is 

obtained by performing a principal components analysis on the HSI and using the linear 

mixing model rule of thumb in which one assumes the number of classes in the scene is 

one greater than the number of significant PCA bands where the number of significant 

PCA bands is determined by setting a threshold on total variance captured (Eismann, 

2012).  ISODATA has a potential drawback in that it requires six user-defined parameters 

and thresholds besides the initial number of desired classes, which could alter the 

algorithms effectiveness if these values are not adjusted for different scenes.  While other 

unsupervised clustering algorithms with fewer user inputs could be implemented (the 

Improved Split-and-Merge Clustering algorithm for example), ISODATA provides good 

results on the datasets used in this research with minimal deviation from the six default 

parameters.  The end result of running the ISODATA algorithm on the fused RGB and 

lidar cube is a material map at approximately the resolution of the HR imagery where 

pixels of similar color-normalized red, green, and blue intensity; lidar return strength 

intensity; and lidar elevation are classified as the same materials. 

The ISODATA material map is smoothed using an adaptive median filter to 

eliminate apparent noisy assignments and further smoothed by requiring a minimum 

number of pixels in assigned regions (Givens, et al., 2012).  In addition, the ISODATA 

results tend to have thin borders of likely misclassified pixels around large uniform 
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regions of a single class.  The thin borders are reduced by performing a morphological 

opening of each of the classes, then iteratively dilating each of the classes to fill the voids 

left by the openings.  While each of these smoothing steps might eliminate small regions 

of correctly assigned pixels, the low-resolution HSI cannot provide pure pixels to further 

investigate them anyway.  These smoothing steps introduce additional user inputs which 

may need to be adjusted depending on the scene under investigation. 

The next step in this classification process is to check whether pixel regions 

assigned to a class by the ISODATA algorithm have similar spectral content in the HSI.  

However, to be able to compare spectra of different regions, the regions must be of large 

enough area to ensure they cover a full HSI pixel.  To ensure the regions are large 

enough, the smoothed ISODATA result is transformed to the HSI resolution and then 

borders of continuous regions are eroded by two pixels.  Using connected components, 

the spectral average of the remaining pixels of each region are then compared to other 

regions of the same class label by determining the spectral angle between the two.  If the 

spectral angle falls above a threshold, the region is labeled as a new class.  If not, the 

class average spectrum is updated to include both regions.  Unfortunately, in its current 

state this step can only be applied to pure pixels, so regions of the ISODATA material 

map that are too small to ensure a pure HSI pixel are not included in this step.  The 

results of the HSI spectral comparison are then transformed back to the HR space of the 

five-band cube and logic steps are applied to separate classes of different materials and 

potentially merge classes that are spectrally similar.  The merging of similar classes is not 

especially important for synthetic scene generation since there is no limit on the number 

of material classes used in DIRSIG.  Thus, it can be bypassed to eliminate the chance for 
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it to introduce errors.  The flowchart in Figure 33 shows the main steps involved in 

Approach 3 along with the additional bypass arrow for the merging logic step. 

 
Figure 33.  Flowchart of the main steps of Approach 3. 

4.8.1 Approach 3 Walkthrough on the Reduced ROI Melrose Scene 

For easy comparison to Approach 2, the same cropped Melrose ROI is presented 

to show the results of each step in Approach 3.  As stated in the Approach 2 section, the 

region includes a mix of vegetation and manmade structures as well as elevation variation 
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and is therefore a good challenge for the classification routine.  Once cut down to 

approximately the same ROI, the datasets are registered using the Walli registration 

method.  The resulting RGB is then color normalized using Equation (4.1) to minimize 

the shading in the image.  Both images are shown below in Figure 34 and the rasterized 

lidar return strength and elevation are shown in Figure 35. 

 
Figure 34.  Left: The RGB of region of interest, Right: The color-normalized RGB 
used as the first three bands of the fused data cube for ISODATA (histogram 
equalized here for viewing). 

The concatenation of the weighted, color-normalized RGB and the two rasterized lidar 

bands forms the cube that is input into the ISODATA algorithm.  The ISODATA result 

with a user input of seven desired classes is shown in Figure 36 below.  This result also 

includes an application of adaptive median filtering to reduce salt and pepper type 

incorrect assignments along with morphological steps to enforce minimum region size 

and eliminate thin border regions. 
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Figure 35.  Left: The rasterized lidar return strength of the region of interest used 
as band 4 in the data cube input to ISODATA, Right: The rasterized lidar elevation 
of the region of interest used as band 5. 

 
Figure 36.  The ISODATA output of the fused, five band cube after smoothing and 
minimum region size.  Initial number of bands specified is seven, but ISODATA 
finished with six. 
 
As these results show, ISODATA does an impressive job of segmenting the cube, but 

some class confusion exists.  For example, note that the non-rectangular dark blue region 

at the bottom of the image (circled in red) falls in the same class as the asphalt shingle 
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roofing of the buildings and asphalt road, but is actually a small pond.  Also, the white, 

metal roofed building class (light blue, circled in black) falls in one of the grass classes.  

Finally, assuming they are spectrally similar, the orange and yellow classes represent 

classes that should probably be merged as a single tree class but were separated by 

ISODATA due to the varying height of the tree canopy. 

The HSI data is incorporated into this process by applying logical rule-based 

classification.  First, the smoothed ISODATA material map is transformed to HSI space 

and connected components are eroded by two full HSI pixels using MATLAB’s imerode 

function with a two pixel radius disk.  The ISODATA result at HSI resolution and 

resulting map after erosion to pure pixels are shown in Figure 37 below. 

 
Figure 37.  Left:  The ISODATA result transformed to HSI space, Right:  The 
remaining connected components after erosion of outer two pixels. 
 

Next, spectral angles between mean spectra for each of the connected components 

are computed.  If the spectral angle between two connected components falls over a 

threshold (0.15 radians), a new class is created.  Otherwise, the two regions are averaged 



80 

together to create a combined class average spectrum.  The next connected component is 

then compared to the first two and so on.  Figure 38 shows the resulting classification of 

the pure pixel connected components in which five distinct materials are determined to be 

present and where each color refers to a separate class. 

 
Figure 38.  The resulting material map using spectral angle measurement between 
connected components. 
 

This eroded class map from the HSI is then transformed back to the HR space for 

the application of logic rules.  The first rule is that connected components which share the 

same ISODATA result, but receive different HSI classes are labeled as different classes.  

In the event that two different HSI results occurred in the same ISODATA connected 

component (i.e. a connected component in the HR space that, when transformed to HSI 

space and eroded, become two or more connected components which then received 

separate spectral angle classifications) the spectral angle result assigned to the majority of 

the pixels in the connected component region is used for the entire connected component.  

The resulting material map after applying this rule is shown below in Figure 39.  Notice 
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that the pond is separated from the rooftops and road asphalt classes by this step and the 

white roofed building and covered walkway is separated from the grass class.  However, 

the trees mislabeled as asphalt roof top in the center of the circular drive are still 

incorrectly labeled because these regions are eroded away when transformed to HSI 

space and thus deemed too small to include pure pixels.  A different type of rule is 

needed for small regions and will hopefully become available through future research.  

Additionally, the application of this rule using spectral angle separates the grass class into 

three separate classes and the asphalt shingle from the asphalt road class.  Changing the 

minimum spectral angle for class separation would alter this result if less or more classes 

are desired. 

 
Figure 39.  The resulting material map after applying first logic rule using the HSI 
spectral angle results. 
 

Next, connected components which are labeled as different classes by ISODATA, 

but are identified as the same class by the spectral angle comparison are labeled the same, 

but only if they are adjacent to each other.  This step could be changed to label all 
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connected components with the same spectral angle as the same regardless of their spatial 

relationship to each other.  For this scene eliminating the adjacency requirement results in 

a combined class for some of the roof tops and road asphalt.  The user’s end goals for the 

classification dictates whether this result is preferable.  Enforcing the adjacency 

requirement, this step merged some of the adjacent tree and grass regions into single, 

respective tree and grass classes.  Below in Figure 40 is the final result compared to the 

initial ISODATA result from Figure 36 and a material map produced by using the 

unsupervised Stochastic Expectation Maximization algorithm on the HSI alone for 

comparison.  

 
Figure 40.  Left to right:  The final resulting material map from Figure 39, the 
initial ISODATA segmentation of the fused RGB/lidar cube, and an example SEM 
classification using only the HSI for comparison. 
 
As the results in Figure 40 show, using the ISODATA algorithm on a fused, HR cube 

with proper weighting of the bands followed by logic based rules to incorporate spectral 

information from the HSI results in a material map with approximately ten-fold increase 

in resolution compared to using the HSI alone. 

 The following example shows another case in which the erosion step, which 

ensures the comparison of only pure pixels at the HSI resolution, can produce incorrect 
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results.  In this example, a slightly larger region of interest from the Melrose scene is 

used.  Figure 41 shows the ISODATA results on the left with a green circle identifying 

where the error occurs.  This is the same bright white rooftop which is identified in the 

previous example and successfully separated into its own class.  In this case, however, 

the initial segmentation by the ISODATA results in a the rooftop being classified into 

two separate classes likely due to the difference in illumination angle and therefore 

brightness of the two halves of the roof.  Since the two classes are fairly narrow in the 

vertical direction, when the ISODATA result is transformed to the HSI space (the middle 

image in Figure 41) and then eroded to ensure pure pixels (the right image in Figure 41), 

the two regions are eroded away and no spectral comparison is performed.  Thus the two 

roof halves retain their initial ISODATA assignment which has the rooftop split between 

a tree and asphalt class. 

 
Figure 41.  Additional example of Approach 3 showing how small regions at the 
high resolution can be eroded away and not included in the spectral comparison 
potentially leading to incorrect results. 

Even with the possibility of incorrect classification of small pixel regions, the test 

results from Approach 3 show a large improvement in resolution of the material maps.  

Thus, the approach is included as another fully automated process for producing a 



84 

material map in the LHD method and presented here on the full VanLare and Melrose 

datasets.  Again, the VanLare dataset is a synthetic dataset created using DIRSIG with a 

high-fidelity scene.  The Melrose dataset is a real dataset collected over a site near 

Melrose, Florida for the NEON project.  This section shows the steps and results of the 

LHD method using the ISODATA fusion method of Approach 3 to generate a HR 

material map. 

4.8.2 Approach 3 Applied to the VanLare and Full Melrose Datasets 

The first step of the Approach 3 HR classification process is to run the ISODATA 

classification algorithm on a five-band, fused cube consisting of the red, green, and blue 

bands of the HR imagery and the rasterized return strength and elevation from the lidar 

data.  It should be noted that, for this case in which the inputs for the method are 

DIRSIG-generated, the rasterization of the lidar return strength produced by DIRSIG is 

good enough to perform the registration, but too noisy to produce consistent classification 

results.  DIRSIG uses a photon mapping technique to produce the lidar returns so noise in 

the lidar returns could be reduced by including more photons in the simulation, but this 

caused run times to become prohibitively long.  Instead, to generate a return strength 

image consistent with the images obtained using real lidar instruments, a passive imager 

centered at 1064 nm was placed over the scene in DIRSIG.  Additionally, instead of 

using the sun as the illumination source, which would have produced shading in the scene 

and would therefore not have been representative of the actively illuminated return 

strength obtained using a lidar instrument, illumination was provided by modeling the 

sky as a 5000 K blackbody instead of its more common 260 K temperature.  This created 

the return strength image seen as band 4 in Figure 42. 
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Figure 42.  The five band cube used to perform image segmentation with ISODATA.  
Bands one, two, and three are the color-normalized red, green, and blue bands from 
the HR imagery, band four is the modeled IR return strength, and band five is the 
rasterized lidar elevation. 

ISODATA is then run on the five band cube with the initial condition to classify 

the pixels into seven classes.  When applied to the VanLare scene, the principal 

component dimensionality reduction results in six significant PCA bands and therefore 

seven classes are used to initiate the ISODATA algorithm.  The number of significant 

principal component bands determined in the Melrose data case is 15 and is too 

computationally demanding for the home desktop computer used for the processing.  

Since the number of significant principal component bands can be adjusted simply by 

adjusting the threshold amount of variance to capture, the number of significant bands is 

somewhat arbitrary and seven classes seemed to produce good results using the 

ISODATA algorithm and this five-band cube.  The ISODATA results are shown in 

Figure 43.  Some slight smoothing and morphology are employed to eliminate very small 
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connected components and some thin line artifacts that tend to be produced around 

building edges. 

 
Figure 43.  The initial ISODATA classification results using the fused five-band 
cube consisting of the three RGB bands from the HR imagery, a modeled IR return 
strength band, and the rasterized lidar elevation band. 
 

After the initial image segmentation by the ISODATA algorithm, the next step is 

to further separate the classes by relying on the spectral component given in the HSI.  

However, since the goal is to improve the classification resolution, the connected 

component edge information gained from the fused HR and lidar image is valued higher 

than the hyperspectral component.  In other words, the segmentation resulting from the 

HR ISODATA step is not changed by the information gained from the spectral HSI 

component.  Only the material class assignments of entire connected components are 

adjusted.  Thus, when the segmented image is transformed to hyperspectral space, only 

the pure pixels are retained.  The pure pixel map is generated, by eroding the two 

outermost layers of pixels of each of the connected components in the HSI-space 

segmented image.  The simple spectral angle comparison algorithm is then run to 



87 

differentiate the classes.  It starts with the upper-left-most connected component in the 

scene and sequentially steps through all of the other connected components.  If the next 

connected component differed spectrally from the first by more than 0.15 radians, it is 

considered a new class.  If not, the spectra are averaged and the next connected 

component is evaluated.  The result of that process is shown in Figure 44.   

 
Figure 44.  The resulting material map after a thresholded spectral angle is 
computed for the eroded connected components. 

Though somewhat difficult to distinguish in the Figure 43 image, the ISODATA 

step classifies roof tops and a large portion of the trees as the same material.  In the SAM 

image in Figure 44, these two classes are correctly identified as different materials.  By 

taking this new spectral segmentation back to the HR space and applying the logic step 

that connected components identified as spectrally different must be labeled as separate 

classes, the resulting final HR material map shown in Figure 45 is obtained.  This 

material map is then transformed to the lidar coordinates and draped over the lidar using 

the same technique as in the texture maps from the previous section. 



88 

 
Figure 45.  The final HR material map after the HSI logic step is applied. 
 

Stepping through the same process on the Melrose dataset produces the material 

map shown in Figure 46 below. 

 
Figure 46.  Top:  The resulting HR material map produced using the ISODATA 
fusion method on the Melrose dataset. 
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4.9 Extraction of the Material Library  

For the final step of the LHD method, a reflectance file for each material class is 

generated using the material map (obtained through either Approach 1 or 3) to select up 

to 300 reflectance curves (pixels from the HSI) from each of the full classes.  It is 

important to note that for both the VanLare and Melrose datasets, the HSI is in 

reflectance units.  For the VanLare case, reflectance is achieved simply by dividing by 

capturing the radiance of a perfect spectralon tile placed in the synthetic scene.  For the 

Melrose dataset, the HSI is provided in reflectance units with atmospheric compensation 

accomplished using the FLAASH algorithm (Krause and Kuester, 2011).  If the 

Approach 3 material map is used to generate the spectral library, it must first be 

transformed to HSI space and eroded to ensure selection of pure pixels.   

The reflectance curves are represented as an emissivity in the DIRSIG spectral 

library which is equal to one minus reflectance for opaque objects under the assumptions 

of Kirchhoff’s Law (using Equation (3.9)).  The selection is performed using a uniform 

random selection with respect to pixel indices ensuring the class statistics of each 

selected subset reflect the class statistics of their respective full classes.  Lambertian 

materials are assumed for simplicity.  The scene specific emissivities for each material 

are then written to a text file consisting of pairs of column vectors for wavelength and 

emissivity for each spectrum in the class as DIRSIG requires.  The final HR material map 

is also used to locate each class in the red, green, and blue texture maps and generate the 

material means and standard deviations for each map.  Figure 47 shows the full 

Mahalanobis distance statistics for a vegetation class identified using the SEM method of 

Approach 1 and the corresponding statistics of the 300 randomly selected reflectances 
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pulled from that class to be written to the emissivity file.  The plots show that the shape 

of the Mahalanobis distance distribution of the subset  is similar to that of the full set and 

thus the uniform random selection is successful in capturing a representative subset of 

spectra for the class. 

 
Figure 47. Top:  Example class statistics for one of the SEM determined endmember 
classes.  Bottom:  Statistics for uniform random selection of 300 spectra ensuring the 
emissivity file contains a range of spectra representative of the entire class. 
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4.10 Chapter Summary 

 This chapter presents the end-to-end process for automating the extraction of a 

synthetic scene from HR imagery, lidar, and HSI using the LHD method.  It begins with 

an introduction to the VanLare and Melrose datasets, then includes explanations and 

example results for each step in the registration process, geometry extraction, and texture 

map extraction.  Next, the three new approaches to automated material map extraction are 

presented.  Approach 1 is an automated, non-fused approach, Approach 2 is an attempted 

fused approach which is not successfully fully automated and produced less than 

satisfactory results, and Approach 3 is a fused, fully-automated approach.  The three 

approaches are presented in detail along with flowcharts showing the main steps in each 

approach and example outputs for each step.  The final section of the chapter discusses 

how material libraries are autonomously extracted from the HSI using the material maps 

generated from Approaches 1 and 3.  The next chapter presents DIRSIG-generated 

synthetic imagery using the autonomously generated scenes of this chapter and compares 

the quality of the results from Approaches 1 and 3 to the original scene inputs. 
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 V. Comparison of Scene Construction Methods 

5.1 Chapter Overview 

 This chapter evaluates the quality of DIRSIG-generated synthetic imagery of  the 

VanLare and Melrose scenes built using Approaches 1 and 3 in the LHD method.  Both 

RGB imagery and HSI are presented for a qualitative evaluation of the Approach 1 and 3 

results when compared to the original input RGB imagery and HSI.  Additionally, 

automated registration between the synthetic imagery from the LHD scenes to their 

respective scene inputs is shown to provide confidence that the recreated scenes are 

accurate enough to perform multimodal registration.  While the qualitative evaluation and 

automated registration test provide good confidence in the accuracy of the synthetic 

scenes from both the non-fused SEM Approach 1 and the fused ISODATA Approach 3, 

evaluation of actual scene accuracy is difficult without a quantitative comparison to the 

original input imagery.  Thus, this chapter also presents a quantitative comparison using 

an average band difference metric and spectral angle metric.  These comparison metrics 

are first applied to the VanLare dataset followed by the Melrose dataset.  Finally, while 

the average band difference metric shows that both Approach 1 and Approach 3 produce 

accurate synthetic scenes, it fails to quantitatively capture the sharpening improvements 

made by Approach 3.  Thus an additional metric is included to help capture this result 

and present ideas for future research in the evaluation of synthetic scene accuracy. 

5.2 VanLare Scene Comparisons 

By generating a synthetic scene from  the synthetically generated VanLare 

dataset, the DIRSIG outputs of the recreated scene are easily compared to the original 
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DIRSIG generated inputs because the camera positions and designs, atmospheric 

conditions, and illumination conditions are all duplicated exactly.  Thus no registration or 

other matching is required between the input and output images to perform qualitative 

and quantitative comparisons.  Before performing quantitative comparisons, the first and 

easiest comparison is a qualitative examination of the RGB imagery.  Here, the exact 

same sensor and placement is used over both the original high-fidelity scene and the new 

recreated scenes.  The high-fidelity input RGB is shown in Figure 48 above the synthetic 

RGB imagery created using the recreated scenes of Approach 1 and Approach 3 in 

DIRSIG.  While the three images in Figure 48 look very similar, under close inspection 

the middle image, generated using the lower resolution material map of Approach 1, 

shows pixelation around many of the thin border regions especially in the water holding 

ponds on the right side of the image.  Otherwise, the qualitative comparisons of Approach 

1 and Approach 3 show little difference. 

To show that the recreated model is representative of the original scene, synthetic 

imagery generated using the recreated model can be registered to the input ‘original’ 

synthetic imagery.  The successful quarter-pixel registration of the input RGB and 

recreated RGB from Approach 1 shown in Figure 49 provides an additional check that 

the recreated scene is a good representative of the original input scene.  The resulting 

transformation matrix and match information are provided in Table 6. 
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Figure 48.  Top:  The DIRSIG generated RGB image over the “original” high-fidelity scene 
at 0.3 meter GSD, Middle:  The DIRSIG generated RGB image using the non-fused SEM 
Approach 1 material map, Bottom:  The DIRSIG generated RGB image using the 
ISODATA fused Approach 3 material map.  
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Figure 49.  Registration of DIRSIG RGB image and real RGB image of the VanLare 
scene.  The green lines indicate the 692 ‘good’ SIFT matches which survived culling 
by both RANSAC and RMSDE minimization. 
Table 6.  The registration results of the original input RGB image to the RGB image 
produced using the recreated model. 

High res RGB Original to DIRSIG 
Registration 

1.0016 0.0004 0 
0.0002 1.0020 0 
-1.8290 -1.1477 1 

RMSDE Average: 0.2495 pixels 
Matches Remaining: 692 

For a more quantitative comparison, an average intensity difference per band is 

calculated to compare the RGB images from the recreated scenes to the original input 

RGB images.  The calculation is performed at each pixel using the following equation   

 
𝐷𝑖𝑗 =

∑ �𝑥𝑛𝑖,𝑗 − 𝑢𝑛𝑖,𝑗�𝑛

𝑛
, (5.1)  

where Dij is the average difference per band and i and j specify the pixel location, n is the 

number of bands in the image and x and u are the spectra (or RGB values in the case of 

RGB images) of the original and recreated scenes.  Figure 50 below shows the resulting 

images using this method of comparison.  While both scenes produce relatively low 

average error of 4.5 digital counts per band (on a scale of 0 to 255) the pixelation error 

around the water holding pools is readily apparent in the top image comparing the scene 

using the low-resolution material map of Approach 1 to the original RGB.  However, the 
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bottom image shows larger error along the tree line in the bottom right portion of the 

image where the ISODATA fusion classification of Approach 3 appears to have 

misclassified some grass areas as tree.  As detailed in the previous chapter, this thin 

region is another instance in which the connected components are too small to include 

pure pixels for spectral comparison when the HR ISODATA result is converted to HSI 

space and eroded.  For both cases, the largest variations are seen around the edges of the 

buildings where there could be slight registration error in addition to variations in the 

geometry due to the coarser sampling of the lidar. 

 
Figure 50.  Top:  The average intensity difference per band image comparing the 
low-resolution VanLare scene to the original, Bottom:  The average intensity 
difference per band comparing the HR VanLare scene to the original. 
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Similarly, the HSI can be compared both qualitatively and quantitatively.  Figure 

51 visually compares the HSI of the original high-fidelity scene to the low-resolution 

Approach 1 and HR Approach 3 recreated scenes.  These RGB images are created using 

the 650 nm, 550 nm, and 450 nm bands of the respective HSI outputs.  

The full content of the HSI can be compared using the same average band 

difference calculation from Equation (5.1).  Here the actual value has a more physical 

meaning since the compared cubes are in units of percent reflectance.  Therefore, each 

pixel in the difference images are the average reflectance difference per band at that 

location.  The image-wide average band difference for the low-resolution Approach 1 

scene to the original scene comparison is 2.0% average reflectance difference per band 

and the average band difference for the HR Approach 3 scene is 2.2% average reflectance 

difference per band. As in the RGB comparison, the largest differences are in the tree 

regions and around building edges as can be seen in Figure 52. 

While the difference images give an indication of intensity difference between the 

two HSI outputs, a better spectral comparison can be accomplished by computing the 

spectral angle between the high-fidelity and recreated HSI cubes at each pixel.  These 

images are shown in Figure 53.  Here the angles in radians have less physical value since 

they are an angle in the n-dimensional space of the hyperspectral cubes (210 bands in this 

case), but the image mean is 0.05 radians for both cases.  It can be noted, however, that 

many of the larger angles tend to occur along shaded regions for both cases, but overall 

the recreated scenes are in better agreement spectrally when the intensity component is 

not included. 
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Figure 51.  Top:  Color composite of the original HSI, Middle:  Color composite of 
the low-resolution Approach 1 recreated HSI, Bottom:  Color composite of the HR 
Approach 3 recreated scene. 
  



99 

 

 
Figure 52.  The average reflectance difference per band for the HSI of the low-
resolution scene (top) and HR scene (bottom). 

 

 
Figure 53.  The spectral angle image comparing the HSI of the original high-fidelity 
scene to the HSI of the recreated scene. 
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5.3 Melrose Scene Comparisons 

In this section, the same comparisons are performed on the real Melrose dataset as 

in the VanLare scene case.  However, since exact camera parameters, date and time of 

collect, and atmospheric conditions of the input imagery are not known in this case, these 

parameters are estimated when using DIRSIG to produce the synthetic RGB and 

hyperspectral imagery for comparison.  Additionally, since camera locations are not 

known, a registration of the synthetic imagery to the input imagery is necessary before 

quantitative comparisons can be made.  This extra step introduces additional error in 

contrast to the fully modeled VanLare case in which no registration is required since 

camera positions and parameters are reproduced exactly between the original and 

recreated images. 

For the qualitative comparison, though some pixelation is again evident in the 

low-resolution Approach 1 recreated scene, the RGB imagery from both the low-

resolution and HR Approach 3 Melrose scene compare well to the input FLDOT RGB 

imagery as seen in Figure 54 below. 

The registration of the Approach 1 RGB to the input RGB is shown below.  

Besides giving confidence that the recreated scene accurately represents the real scene, 

this registration enables the same quantitative evaluations that are shown for the VanLare 

scene.  In this case, the two images are registered to sub-quarter-pixel accuracy.  Figure 

55 shows the good matches in green and Table 7 shows the resulting transformation 

matrix along with the sub-quarter-pixel average RMSDE and 295 remaining matches. 
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Figure 54.  Top left:  The input FLDOT RGB imagery over Melrose, Florida, Top 
right:  The RGB imagery using the Approach 1 scene, Bottom:  The RGB imagery 
created using the Approach 3 scene. 

 
Figure 55.  The registration of the input RGB over Melrose, FL to a DIRSIG 
generated RGB using the recreated scene. 
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Table 7.  The resulting transformation matrix between the input and Approach 1 
recreated RGBs over Melrose, FL. 

High res RGB Original to DIRSIG 
Registration 

1.0470 -0.0169 0 
0.0066 0.9072 0 
6.7381 -5.6218 1 

RMSDE Average: 0.2457 pixels 
Matches Remaining: 295 

After registration, the synthetic imagery from the Approach 1 and Approach 3 

scenes are compared to the input images in the same way as in the pure modeled VanLare 

scene.  Figure 56 shows the intensity difference per band between the DIRSIG generated 

RGB and the input FLDOT RGB using the Approach 1 scene and the Approach 3 scene. 

   
Figure 56.  Left: the resulting average band difference image comparing the RGB 
image of the low-resolution Approach 1 scene to the input FLDOT RGB, Right: the 
resulting average band difference image comparing the RGB image of the HR 
Approach 3 scene to the input FLDOT RGB. 

In this case the low-resolution Approach 1 scene results in an average of 17.7 

digital counts difference per band while the HR Approach 3 scene results in an average of 

16.8 digital counts difference per band from the original FLDOT RGB image on the 0 to 

255 digital count range.  In both the low-resolution and HR scenes, the larger intensity 
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errors again occur primarily along sharp elevation areas and where trees are not properly 

separated from ground and building returns in the geometry and thus create hard shadows 

where there are none in the original imagery. 

 As in the VanLare case, the DIRSIG generated HSI for the low-resolution and HR 

scenes can be compared to the input AVIRIS HSI using the average band difference and 

spectral angle metrics.  Figure 57 shows the calculated average reflectance difference per 

band for the low-resolution Approach 1 scene HSI (top left) and HR Approach 3 scene 

HSI (top right) as well as the SAM images for the low-resolution scene HSI (bottom left) 

and HR scene HSI (bottom right).  The input HSI is in reflectance so each band has a 

range of 0 to 100 percent reflectance and the image mean for the average reflectance 

difference per band for the low-resolution scene HSI is 7.7% while the image mean for 

the HR scene is 7.9%.  The spectral angle image mean for the low-resolution scene is 

0.17 radians and 0.18 radians for the HR scene.  While the numbers do not indicate a 

large difference in the accuracy of the imagery resulting from the two scenes, the 

relatively low numbers do show that both scenes are good representations of the original 

scene.  As in the fully-modeled VanLare dataset case, the general results again show 

better spectral agreement when intensity is not included particularly away from material 

geometry transitions in the scene. 
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Figure 57.  Top left:  The average reflectance difference per band for the low-
resolution scene HSI, Top right:  The average reflectance difference per band for 
the HR scene HSI, Bottom left:  The SAM image for the low-resolution scene HSI, 
Bottom right:  The SAM image for the HR scene HSI. 
 
 The consolidated results for Approach 1 and Approach 3 are shown in Table 8 for 

the VanLare scene and Table 9 for the Melrose scene.  The results for both the non-fused, 

low-resolution (Approach 1) and fused, HR (Approach 3) approaches are relatively low 

and thus both methods appear to be viable for accurately reproducing the scenes.  

Determining which approach is better is therefore left to the qualitative evaluation and 
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user requirements.  However, if the user intends to model a sensor with higher resolution 

than the input HSI, Approach 3 does qualitatively give more accurate results. 

Table 8.  The consolidated results for the two fully automated LHD approaches 
(Approach 1 and Approach 3) on the VanLare dataset. 

Approach RGB ABD 
(Digital Counts) 

HSI ABD 
(Percent Reflectance) 

HSI SAM 
(Radians) 

Statistic Avg Std Avg Std Avg Std 
1: HSI-only 4.5 6.5 2.0 2.0 0.05 0.07 

3: Segmentation 4.5 6.2 2.1 2.3 0.05 0.07 

Table 9.  The consolidated results for the two fully automated LHD approaches 
(Approach 1 and Approach 3) on the Melrose dataset. 

Approach RGB ABD 
(Digital Counts) 

HSI ABD 
(Percent Reflectance) 

HSI SAM 
(Radians) 

Statistic Avg Std Avg Std Avg Std 
1: HSI-only 18.3 14.0 7.7 5.2 0.2 0.2 

3: Segmentation 17.0 13.5 7.9 5.3 0.2 0.2 

5.4 High-Resolution Results and Discussion of the ABD Metric 

 The inability of the ABD metric to distinguish between the quality of scenes 

produced using the fused Approach 3 versus the non-fused Approach 1 seems to be in 

contradiction with evident pixelation error in synthetic imagery produced from Approach 

1 scenes.  This pixelation error is particularly evident when small GSD synthetic imagery 

is created using the Approach 1 scenes as shown in Figure 58.  This discrepancy led to  

the investigation of an additional metric in which the number of pixels with error below a 

set threshold are computed for each of the two scenes.  In this metric, the ABD value at 

each pixel is divided by the illumination intensity of the input imagery at that pixel where 

the grayscale illumination intensity is found using MATLAB’s rgb2gray function 

(MATLAB, 2010).  The resulting image is a percent error image which is shown for a 

windowed region of the VanLare scene in Figure 59 for Approach 1and Approach 3.  

Using this metric on the windowed region, the Approach 1 windowed region has 70.4% 
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of its pixels within 15% of the original input RGB image while the Approach 3 

windowed region has 86.5% of its pixels within 15% of the original input RGB image.  

Over the same windowed region, the ABD values are still relatively similar at 6.7 digital 

counts for Approach 1 and 5.8 digital counts for Approach 3.   

 From this new thresholded percent error metric, it can be concluded that the 

sharpening of the material map accomplished by Approach 3 pushes large errors into 

small regions.  Thus, it does create a higher resolution and more accurate material map, 

but similar amounts of overall error are redistributed to smaller boarder regions between 

materials.  The windowed and thresholded percent error metric provides an additional 

quantitative evaluation of the recreated scenes and could be further pursued in future 

research to help distinguish between automated synthetic scene generation approaches. 

5.5 Chapter Summary  

 The qualitative evaluation of synthetic imagery generated from the recreated 

scenes of Approach 1 and Approach 3 along with registration of the synthetic imagery to 

the input imageries lend high confidence to the automated LHD method.  Furthermore, 

while determining a good metric to quantify the absolute accuracy of a reconstructed 

synthetic scene is a difficult task, the average band difference and spectral angle metrics 

at least allow for the ability to quantify relative accuracy within and between scenes.  The 

relatively low numbers given by these metrics when applied to the VanLare and Melrose 

scenes recreated with both the low-resolution non-fused material map of Approach 1 and 

the  HR fused material map or Approach 3 give a high confidence that the automated 

extraction of geometry, texture and spectra is completed with a sufficient level of 
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accuracy using the LHD method.  The initial results of the windowed and thresholded 

percent error metric are promising, but additional research is needed to improve the 

quantitative evaluation of autonomously generated synthetic scenes.   

 

 

 

Figure 58.  Small GSD imagery of the Approach 1 (top) and Approach 3 (bottom) 
generated scenes. 
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Figure 59.  Percent error image for the Approach 1 scene (top) versus the Approach 
3 scene (bottom) for a windowed portion of the VanLare dataset. 
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VI.  Conclusions and Recommendations 

 This chapter discusses the implications of the methods developed in this research 

and their results in the modeling community.  It begins by identifying and summarizing 

the specific contributions made in the research.  Next, it presents some of the future 

research paths which could be taken to further advance the research.  The final section 

closes with a summary of the chapter and overall effort. 

6.1 Research Contributions 

 Fully automating the generation of synthetic scenes is the initial and ultimate goal 

of this research, but the automated processes which are presented here to accomplish 

automated synthetic scene generation are not the only resulting contributions.  The 

following sections present the specific contributions resulting from this research effort. 

6.1.1 Full Automation of Synthetic Scene Generation 

 Previous research efforts greatly reduce the time required to generate synthetic 

scenes by automating the extraction of the scene geometry and texture from lidar and HR 

imagery.  Generating wide-area scenes using the methods developed in those efforts can 

be accomplished in days instead of months.  The assignment of spectral content to the 

scenes, however, is still a manual effort when using these previous methods.  

Furthermore, when using a manual method to assign spectral content, if assigned spectra 

are extracted from a material library, the user may be limited to the assignment of a best-

match representative spectrum of a similar material rather than the exact material to be 

modeled.  Thus, the assigned spectra may not be perfect representations for the materials 
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in the scene and may not include the true spectral diversity of the materials at the real-

world site.   

 The LHD method developed in this research automates the spectral assignment in 

the scene reducing the time required to generate a scene from days to hours and using 

scene-measured spectra pulled directly from the HSI.  Additionally, since no commercial 

products are used in the geometry extraction developed in this research, the algorithms 

are written in MATLAB and are freely available.  Finally, because the resulting material 

map can be related to the texture maps using the transformation matrix from the 

registration step, individual mean and standard deviations can be calculated for each 

material in the scene.  This allows DIRSIG to better select spectra from the material 

library which best match the red, green, and blue intensity values of the texture maps.  

The bullets below highlight some of the main contributions of the LHD method: 

• Full automation reduces time required to generate a scene and allows construction 
of a scene even if it cannot be accessed by ground 

• Deriving the spectral library directly from HSI ensures the scene spectra match 
the materials of the site and capture real-world variety and complexity 

• Geometry extraction algorithm is written in MATLAB and available for future 
research (no additional commercial software required) 

• The constructed scene allows for registration of disparate modalities and look 
angles to be registered to the scene accounting for three-dimensional effects 
acting as a Rosetta Stone for the site 

• Material map is used to pull material specific intensity means and standard 
deviations from the texture maps enabling more accurate spectral assignment 

6.1.2 Scene Classification:  New Fused Approaches 

 Besides contributing to the synthetic scene, synthetic imagery, and physics-based 

modeling community, the three approaches developed to automate the spectral 

assignment step of the LHD method  provide new contributions to the general field of 
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scene classification.  With multi-modal collects becoming more common, interest in data 

fusion and fused classification is increasing.  Besides gaining access to new wide-area 

scenes for algorithm testing and development, the primary interest of the sponsor of this 

work (AFRL/RYA) is the ability to fuse and extract information from multiple 

modalities.  All three approaches used to incorporate spectral information into the scene 

generation process take advantage of Walli’s SIFT, RANSAC, average RMSDE 

minimization registration process and show that this robust registration process can be 

used to relate the information of the HR imagery, lidar, and HSI.  Approaches 2 and 3 

leverage the resulting registration transformation matrices to improve the resolution of 

the scene classification with novel fused approaches.  The bullets below highlight the 

main contributions in this area of the research: 

• HSI can be registered to rasterized lidar return strength images and HR imagery 
using the Walli registration process 

• Using the rasterized lidar elevation image as a band in a fused cube allows non-
correlated information to be added to the classification process 

• The fused RGB and lidar cube enables the creation of material-specific, five-
component description vectors 

• By segmenting the scene at high resolution then incorporating HSI information, 
Approach 3 shows an approximately 10-fold resolution enhancement in the 
resulting material map 

6.1.3 Evaluation of Scene Accuracy 

 Another area of contribution for this research effort is in the ability to 

quantitatively evaluate the accuracy of the autonomously generated scene by comparing 

scene-generated outputs to the scene inputs.  While the ABD metric did not show a 

significant difference between the Approach 1 and Approach 3 results, it does give an 
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intuitive metric to understand the accuracy of the output synthetic imagery even in the 

multi-dimensional space of the RGB imagery and HSI.   

 The additional proposed windowed and thresholded percent error metric provides 

a good first step and quantitatively shows a difference between the Approach 1 and 

Approach 3 results, but still relies on a somewhat arbitrary accuracy threshold.  It gives 

the community an additional starting point to generate better metrics for the comparison 

of output to input imagery for the evaluation of synthetic scene accuracy regardless of the 

method used to generate the scene, but falls short of providing a full evaluation of the 

scene’s ability to produce synthetic imagery which accurately represents real-world data.   

6.1.4 Suite of MATLAB Software Tools 

 A DVD with the documented MATLAB code to read in the input files, extract the 

information, and output the DIRSIG scene files will be submitted to committee members 

and the AFIT Engineering Physics Department.  Also included will be readme instruction 

files and the scene inputs and outputs.  These DVDs will be provided to each of the 

committee members and the AFIT Engineering Physics Department for use by future 

students or interested researchers.  Some of the highlights of the included imagery and 

code are listed here: 

• Input RGB imagery, lidar data, and HSI for both the modeled VanLare scene and 
real Melrose, FL scene 

• Walli’s two-dimensional registration toolkit incorporating epipolar and 
homographic constraints, and average RMSDE minimization 

• Geometry extraction toolkit to read in the lidar, separate tree canopies, and output 
.obj files 

• The SEM (modified from Dr. Eismann’s original code) and ISODATA algorithms 
used for scene classification 

• MATLAB scripts to walk through the additional fused scene classification steps 
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6.2 Recommendations for Future Research 

Limitations of the models developed using the LHD method are readily apparent 

under a few important circumstances.  First, when sensors with GSDs smaller than one 

meter are used to image the scene, the relatively crude facetization of the scene geometry 

is visible.  Refinement techniques developed by Lach and others would help to reduce the 

number of facets used for man-made structures as well as improve tree representations.  

Also, texture and spectral information is not available for vertical facets with the LHD 

approach because it does not yet incorporate off-nadir inputs.  Thus the scene is limited to 

modeling near nadir geometries only.  Finally, any shadowing in the texture map leads to 

the selection of darker representative spectra for the materials that fall in the shadow, so 

shadows from the texture map show up in the final model regardless of the sun angle 

being modeled by the user.  Thus, the scene exhibits multiple shadows if the scene is used 

to model sun angles which vary significantly from the sun angle captured in the texture 

map.  Each of these limitations are apparent in the close-up RGB image of the elementary 

school in the Melrose scene shown in Figure 60.  

Thus, future work should focus on reducing these limitations by improving scene 

geometries using available refinement techniques.  A method could be developed in 

which tree type, location, and size could be determined from the input spectral and 

elevation information.  This information could then allow the planting of an appropriate 

modeled tree to fit those parameters.  The shadowing of the texture maps could be 

addressed by using the actively illuminated, rasterized lidar return strength as the texture 

map, although this would reduce the GSD of the texture map.   



114 

 
Figure 60.  Close-up off-nadir RGB image produced using the HR Approach 3 
recreated Melrose scene. 

Incorporating off-nadir imagery to supply texturing of vertical facets would also 

be an interesting challenge and would extend the scene’s utility beyond near-nadir 

modeling.  Additionally, investigating sensor pointing error and noise effects on the LHD 

method would provide good insight into how robust the method is for other various input 

sources.  Finally, linking HSI class spectra to a lab measured spectral library would allow 

for the improvement of reflectance spectra in the scene as well as the ability to extend the 

spectral range of the scene past that of the input HSI. 

Even though the linear unmixing method used in Approach 2 to generating a HR 

material map showed limited utility with the two datasets used in this research, the 

intuitiveness and physicality of this approach are appealing.  Additional research could be 
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applied to this method both in determining a reliable automated method to select 

endmembers and in determining the subpixel endmember locations within the HSI pixels 

using the HR information from the rasterized lidar and RGB imagery.  Additionally, it 

may be that the two datasets used for this research are coincidentally better suited to a 

normal mixture model clustering approach rather than the linear mixture model 

endmember approach.  Additional datasets could be used to determine the utility of 

Approach 2. 

 The average band difference metric provides an intuitive evaluation of the scene-

wide error and the windowed and thresholded percent difference error quantifies the 

sharpening improvement of Approach 3 versus Approach 1, but neither are a perfect 

metric for the evaluation of the utility of a synthetic scene.  The true value of a synthetic 

scene lies in its ability to be used in a physics-based model to produce synthetic imagery 

which accurately predicts real imagery of the same or a similar site.  For example, if the 

scene is to be used to evaluate the capability of target detection algorithms to find targets 

in a scene, the performance of those algorithms when used on the synthetic imagery 

should be equivalent to the performance of the algorithms when the real sensor captures 

imagery over the same or similar sites.  Alternatively, if a scene is constructed to serve as 

a Rosetta Stone, then it should have the ability to produce synthetic imagery good enough 

to be registered to imagery not used in the construction of the scene.  Unfortunately, 

additional modalities for the Melrose scene are not currently available for this test.  Thus 

additional research is needed in this area to help quantify the real utility of synthetic 

scenes whether they are generated manually or autonomously. 
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6.3 Summary 

This research presents a fully automated method to extract the three necessary 

components of a wide-area synthetic scene:  Geometry, texture, and spectral.  Whether 

using the non-fused Approach 1 or fused Approaches 3 to generate the material map, the 

synthetic images produced using the LHD-generated scenes are realistic both 

qualitatively and quantitatively lending confidence to this new method.  Additionally, the 

automated incorporation of HSI allows the extraction of high spectral resolution 

information expanding beyond the visible wavelengths and does so accurately and more 

quickly than previous manual and semi-automated methods.  This advancement provides 

the synthetic imagery modeling community with a new, faster method for scene 

generation even when ground access to a site is not available and also provides the 

potential to create a new library of scenes featuring a wider array of various terrain and 

vegetation than currently exists.     
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Appendix A – Determination of Texture Map and Material Map Insertion Point 

Relating the various coordinate systems of all of the input data to the final 

coordinate system in DIRSIG requires some careful consideration.  As is shown in 

Appendix 2, one of the scene inputs for DIRSIG is the latitude and longitude for the 

origin of the coordinate system of the scene.  This is the lower left-most vertex of the 

lidar-based facetized geometry.  Thus the minimum values for the input x and y lidar 

coordinates over the region of interest, which were in Universal Transverse Mercator 

(UTM) coordinates in this case, are subtracted from the lidar dataset through an affine 

translation as shown in the Melrose example in Figure 61 to covert from the lidar 

coordinate system to a local DIRSIG coordinate system. 

 
Figure 61.  Applying a translation to shift the origin on the Melrose scene geometry 
from UTM coordinates to a local DIRSIG coordinate system. 
 

[398779, 3286479,1] * =  [0, 0, 1]

UTM Coordinates, Zone 17 Lat, Long: (29.70°, -82.05°)

1 0 0

0 1 0

-398779 -3286479 1
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The x and y lidar coordinates in UTM are in units of meters from the origin of zone 17.  

The latitude and longitude coordinates of the origin were found using a conversion 

website provided at http://www.rcn.montana.edu/Resources/Converter.aspx then entered 

into the DIRSIG scene generator Graphical User Interface (GUI).   

 With the local coordinate system of the scene geometry set up in  DIRSIG, all that 

remains is to determine the placement of the texture and material maps relative to the 

geometry for proper draping of these maps over the geometry.  This involves the careful 

tracking of all of the affine transformations involved in the image preparations for 

registration as well as the determined registration matrices to come up with the composite 

transformation matrix to convert the texture and material map origins to the local 

DIRSIG coordinate system.  When performing using the HR method of LHD, the texture 

map and the material map are in the same coordinate system, so they have the same 

insertion point into DIRSIG.  This origin is found by transforming the origin on the 

original HR image (0,0) through all of the transformations to arrive at the location of the 

transformed origin in the local DIRSIG coordinates.  The equation for this process is  
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where the lidar translation comes out to zero for the x coordinate, since the lidar has 

already been translated to have a (0,0) origin in the DIRSIG coordinate system, and the 

maximum y value to get to the upper-left-most geometry vertex for the y coordinate since 
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the texture and material maps were placed using an image coordinate system.  It should 

be noted that two different origins are in use here.  The geometry was placed using a 

Cartesian coordinate system and thus has its origin at the lower-left-most vertex and 

positive x increases to the right and positive y increases in the up direction.  The texture 

map and material maps were placed using an image coordinate system where the origin is 

located in the upper left and positive x increases to the right and positive y increases in 

the down direction.  Although not done here, in hindsight, it would have simplified this 

process of determining the origin by using the DIRSIG option of placing the texture and 

material map using a Cartesian coordinate system. 

 One  final consideration should be noted that in the case where either the texture 

map or material map have a non-zero rotation when registered with the lidar, the original 

origin of the draped maps does not give the correct origin in the local DIRSIG space 

because of image padding.  If a counter-clockwise rotation was needed in the registration, 

the x-value is given by the upper-left point, but the y value comes from the upper-right 

point.  For a clockwise rotation, the x value of the new origin comes from the lower-left 

point and the y-value from the upper-left.  Figure 62 shows this process pictorially for the 

counter-clockwise case (top) and clockwise case (bottom). 
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Figure 62.  Determining the upper left insertion point when a counter-clockwise 
(top) or clockwise (bottom) rotation is involved. 
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Appendix B –Building a Scene Using the DIRSIG GUI 

While the LHD method automates the extraction of the scene components in the 

formats necessary for DIRSIG, the DIRSIG Graphical User Interface (GUI) was used to 

construct the .scene text file which tells DIRSIG where all of the scene component files 

are located and how the texture and material maps are related to the geometry and 

material library.  The .scene text file could be generated using a MATLAB script, but the 

GUI is a quick and easy way to accomplish the task.  The Melrose scene generated using 

the HRLHD method is used as an example for the following figures.  The first tab in the 

DIRSIG scene generator is the “General” tab shown in Figure 63.   

 
Figure 63.  The General tab for the DIRSIG scene GUI. 



122 

The General tab simply allows the user to input the scene name, author and description if 

desired.  The most important option on this tab is the specification of the scene base 

directory.  If portability to another computer is desired, it is best if the user selects “Use 

directory containing scene file” so that the base directory is not “hard coded” into the 

.scene file.   

 The next tab is the “Geometry” tab.  This tab allows the user to specify the 

geographic location of the origin of the local DIRSIG coordinates.  This is the latitude 

and longitude of the lower-left-most vertex of the geometry assuming this point has been 

shifted to (0,0) using the technique shown in Appendix 1.  Next on the “Geometry” tab is 

the specification of the locations of the Geometry List Directory and Geometry Entity 

Directory.  For the LHD method, the .odb file is a text file specifying the location of the 

.obj files generated from the lidar input.  The .odb file thus contains the file names of the 

ground and building geometry file and each of the tree return (floating tile) geometry files 

as well as their insertion point into the scene (which was always at the origin for this 

case).  Also note that the directories were again generalized here for easy portability to 

other computers by using “$SCENE_DIR\” as the base directory.  The screen shot of the 

“Geometry” tab is shown in Figure 64. 
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Figure 64.  The Geometry tab for the DIRSIG scene GUI. 
 The “Materials” tab specifies the location of the material database file (.mat 

extension) and emissivity directory which is the location of the spectral library.  For 

scenes constructed using lab measured spectra where surface and bulk properties besides 

reflectance are known, these properties are listed in the .mat file.  These properties are not 

known in the LHD method, however, so the .mat file is simply a list of the materials 

pointing to the appropriate emissivity files in the spectral library.  The example 

“Materials” tab is shown in Figure 65. 
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Figure 65.  The Materials tab for the DIRSIG scene GUI. 
 The most complicated tab, as far as the LHD method is concerned, is the 

“Property Maps” tab.  This tab specifies how the material and texture maps should be 

applied to the scene geometry.  The first information box specifies the maps directory.  

Next, the material map is set up under “Property Maps”.   The “General” tab under the 

material map allows the material map to be named and assigned to the geometry.  The 

assignment is made using a “dummy” material in the .mat file, material 100 in this case.  

In the .obj geometry files, all of the facets including ground, buildings, and tree facets, 

are labeled as material 100.  This tells DIRSIG that the material map is to be draped over 
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the facetized geometry.  Figure 66 shows the “General” tab for the HR material map in 

the Melrose scene.   

 
Figure 66.  The Property Maps tab for the DIRSIG scene GUI showing the General 
tab for the material map. 
 The next tab for the material map is the “Projection” tab.  This tab specifies the 

type of coordinate system to use when draping the material map, how to handle the 

assignment of materials that fall outside of the material map (with mirroring or repeating 

of the map), and most importantly for this case, the insertion point and GSD of the 
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material map as calculated in Appendix 1.  This tab is shown in Figure 67 for the Melrose 

scene. 

 
Figure 67.  The Property Maps tab for the DIRSIG scene GUI showing the 
Projection tab for the material map. 

 The final tab for the material map is the “Parameters” tab.  This tab tells DIRSIG 

the filename of the material map and how to use the digital counts found in the material 

map to assign materials found in the spectral library.  Although any numbering scheme 

could be used in both the material map and the spectral library, it seemed simplest to 
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make the digital counts in the material map match the numbering of the materials in the 

spectral library.  This correspondence is shown in Figure 68. 

 
Figure 68.  The Property Maps tab for the DIRSIG scene GUI showing the 
Parameters tab for the material map. 
 The final step in setting up the .scene file using the DIRSIG GUI is specification 

of the texture map properties.  Like the material map, the texture map has three tabs:  

General, Projection, and Parameters.  The “General” tab includes the name of the texture 

map and the number of the material to which it is assigned.  The example shown in 

Figure 69 is the first texture map which was assigned to material 1. 
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Figure 69.  The Property Maps tab for the DIRSIG scene GUI showing the General 
tab for the first texture map. 
 In this HR example, since the material map was generated at the resolution of the 

texture map, the image insertion points and GSDs are equal and the “Projection” tab for 

the texture map is identical to the “Projection” tab for the material map.  Figure 70 shows 

the example “Projection” tab for the material 1 texture map. 
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Figure 70.  The Property Maps tab for the DIRSIG scene GUI showing the 
Projection tab for the first texture map. 
 The “Parameters” tab for the texture map includes the filenames of the texture 

maps used, the wavelength regions over which they apply, and the material means and 

standard deviations of the digital counts in the texture maps determined separately for 

each material in the scene.  Thus, while each material in the scene uses the same three 

texture maps (red, green, and blue), the statistics for each material are different.  This was 

done to ensure that DIRSIG selects the appropriate, and most representative, spectra from 

each of the spectral library files for each of the materials.  If only an image-wide mean 
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and standard deviation were used and applied to all classes, DIRSIG would select only 

the dimmest spectra from materials which were brighter than the rest of the scene (like 

white roof tops) and only the brightest spectra from materials which were darker than the 

rest of the scene (like black asphalt or dark vegetation).  The material specific statistics 

for the first material in the HR Melrose scene are shown in Figure 71. 

 
Figure 71.  The Property Maps tab for the DIRSIG scene GUI showing the 
Parameters tab for the first texture map. 
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